5 resultados para Learning to look
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Chapter 6 concerns ‘Designing and developing digital and blended learning solutions’, however, despite its title, it is not aimed at developing L&D professionals to be technologists (in so much as how Chapter 3 is not aimed at developing L&D professionals to be accounting and financial experts). Chapter 6 is about developing L&D professionals to be technology savvy. In doing so, I adopt a culinary analogy in presenting this chapter, where the most important factors in creating a dish (e.g. blended learning), are the ingredients and the flavour each of it brings. The chapter first explores the typical technologies and technology products that are available for learning and development i.e. the ingredients. I then introduce the data Format, Interactivity/ Immersion, Timing, Content (creation and curation), Connectivity and Administration (FITCCA) framework, that helps L&D professionals to look beyond the labels of technologies in identifying what the technology offers, its functions and features, which is analogous to the ‘flavours’ of the ingredients. The next section discusses some multimedia principles that are important for L&D professionals to consider in designing and developing digital learning solutions. Finally, whilst there are innumerable permutations of blended learning, this section focuses on the typical emphasis in blended learning and how technology may support such blends.
Resumo:
The continuous advancement in computing, together with the decline in its cost, has resulted in technology becoming ubiquitous (Arbaugh, 2008, Gros, 2007). Technology is growing and is part of our lives in almost every respect, including the way we learn. Technology helps to collapse time and space in learning. For example, technology allows learners to engage with their instructors synchronously, in real time and also asynchronously, by enabling sessions to be recorded. Space and distance is no longer an issue provided there is adequate bandwidth, which determines the most appropriate format such text, audio or video. Technology has revolutionised the way learners learn; courses are designed; and ‘lessons’ are delivered, and continues to do so. The learning process can be made vastly more efficient as learners have knowledge at their fingertips, and unfamiliar concepts can be easily searched and an explanation found in seconds. Technology has also enabled learning to be more flexible, as learners can learn anywhere; at any time; and using different formats, e.g. text or audio. From the perspective of the instructors and L&D providers, technology offers these same advantages, plus easy scalability. Administratively, preparatory work can be undertaken more quickly even whilst student numbers grow. Learners from far and new locations can be easily accommodated. In addition, many technologies can be easily scaled to accommodate new functionality and/ or other new technologies. ‘Designing and Developing Digital and Blended Learning Solutions’ (5DBS), has been developed to recognise the growing importance of technology in L&D. This unit contains four learning outcomes and two assessment criteria, which is the same for all other units, besides Learning Outcome 3 which has three assessment criteria. The four learning outcomes in this unit are: • Learning Outcome 1: Understand current digital technologies and their contribution to learning and development solutions; • Learning Outcome 2: Be able to design blended learning solutions that make appropriate use of new technologies alongside more traditional approaches; • Learning Outcome 3: Know about the processes involved in designing and developing digital learning content efficiently and what makes for engaging and effective digital learning content; • Learning Outcome 4: Understand the issues involved in the successful implementation of digital and blended learning solutions. Each learning outcome is an individual chapter and each assessment unit is allocated its own sections within the respective chapters. This first chapter addresses the first learning outcome, which has two assessment criteria: summarise the range of currently available learning technologies; critically assess a learning requirement to determine the contribution that could be made through the use of learning technologies. The introduction to chapter one is in Section 1.0. Chapter 2 discusses the design of blended learning solutions in consideration of how digital learning technologies may support face-to-face and online delivery. Three learning theory sets: behaviourism; cognitivism; constructivism, are introduced, and the implication of each set of theory on instructional design for blended learning discussed. Chapter 3 centres on how relevant digital learning content may be created. This chapter includes a review of the key roles, tools and processes that are involved in developing digital learning content. Finally, Chapter 4 concerns delivery and implementation of digital and blended learning solutions. This chapter surveys the key formats and models used to inform the configuration of virtual learning environment software platforms. In addition, various software technologies which may be important in creating a VLE ecosystem that helps to enhance the learning experience, are outlined. We introduce the notion of personal learning environment (PLE), which has emerged from the democratisation of learning. We also review the roles, tools, standards and processes that L&D practitioners need to consider within a delivery and implementation of digital and blended learning solution.
Resumo:
Communicating science can be challenging at any educational level. We used informal and experiential learning to engage groups of potential University applicants in one project that involved staging a play in one of the teaching laboratories at the University of Worcester whilst a second project designed a play in house and took this to schools. In the first project the plot centred on stem cell research. School pupils and students from FE Colleges were offered complementary sessions including a lecture exploring the science behind stem cell research, a discussion on ethical aspects involved and a practical using university facilities. We ascertained attitudes to Higher Education in the students participating before and after the event. We found an enhanced view of the science and a highly significant change in attitude to attending University for students taking vocational subjects at FE level. The second project was aimed at exploring attitudes to ethics and animal welfare among a cohort of 15 – 18 year olds. Students engaged with the issues in the drama to a high degree. Our conclusions are that drama is an excellent way to inform potential students about higher education and HE level science in particular. Additionally we demonstrated the importance of events taking place at HE institutions in order to maximise change in attitudes to HE.
Resumo:
A survey of primary schools in England found that girls outperform boys in English across all phases (Ofsted in Moving English forward. Ofsted, Manchester, 2012). The gender gap remains an on-going issue in England, especially for reading attainment. This paper presents evidence of gender differences in learning to read that emerged during the development of a reading scheme for 4- and 5-year-old children in which 372 children from Reception classes in sixteen schools participated in 12-month trials. There were three arms per trial: Intervention non-PD (non-phonically decodable text with mixed methods teaching); Intervention PD (phonically decodable text with mixed methods teaching); and a ‘business as usual’ control condition SP (synthetic phonics and decodable text). Assignment to Intervention condition was randomised. Standardised measures of word reading and comprehension were used. The research provides statistically significant evidence suggesting that boys learn more easily using a mix of whole-word and synthetic phonics approaches. In addition, the evidence indicates that boys learn to read more easily using the natural-style language of ‘real’ books including vocabulary which goes beyond their assumed decoding ability. At post-test, boys using the nonphonically decodable text with mixed methods (Intervention A) were 8 months ahead in reading comprehension compared to boys using a wholly synthetic phonics approach.