3 resultados para LIPID-CONTENT

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective We examined whether feeding pregnant and lactating rats hydrogenated fats rich in trans-fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 21-d-old offspring. Methods Pregnant and lactating Wistar rats were fed with a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). After delivery, male offspring were weighed weekly and killed at day 21 of life by decapitation. Blood and retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Results Offspring of T-group rats had increased serum triacylglycerols and cholesterol, white adipose tissue plasminogen activator inhibitor-1, and tumor necrosis factor-α gene expression, and carcass lipid content and decreased blood leptin and adiponectin and adiponectin gene expression. Conclusion Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation alters the blood lipid profiles and the expression of proinflammatory adipokynes by the adipose tissue of offspring aged 21 d.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of exercise training on the metabolism of rats following the partial removal of fat pads. Three-month-old male Wistar rats were subjected to the partial removal (L) of retroperitoneal white adipose tissue (RET) and epididymal white adipose tissue (EPI), or a sham operation (Sh). Seven days after surgery, both sets of rats were subdivided into exercised (LE or ShE) (swimming 90 min/day, 5 days/week, 6 weeks) and sedentary (LS or ShS) groups. Partial removal of the fat pads increased the lipogenesis rates in both the RET and EPI and decreased the weight and lypolysis rate of the EPI, while the RET weight was not significantly affected by lipectomy. In both lipectomized and sham-operated groups, exercise training caused a reduction in carcass lipid content, food intake, RET and EPI weights, and RET lipogenesis rate. On the other hand, the exercise training increased the percentage of diet-derived lipid accumulation in both tissues, either in sham and lipectomized rats. These results confirmed that regrowth is not uniform and depends on the particular fat pad that is excised. They also demonstrated that exercise training following the partial removal of fat pads modified adipose tissue metabolism, impaired the replenishment of adipose tissue, and decrease body adiposity.