3 resultados para Geology--Europe, Central--Maps

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objectives of this paper are to ascertain the main factors involved in the phenological mechanism of alder flowering in Central Europe by understanding the in - fluence of the main meteorological parameters, the North Atlantic Oscillation (NAO) effect and the study of the Chill and Heat requirements to overcome dormancy. Airborne pollen (1995–2007) was collected in Poznań (Poland) by means a volumetric spore trap. Temperatures for February, and January and February averages of the NAO are generally key factors affecting the timing of the alder pollen seasons. Chilling accumulation (which started in Poznań at the beginning of November, while the end took place during the month of January) of 985 CH with a threshold temperature of -0.25ºC, followed by 118 GDDºC with a threshold temperature of 0.5ºC, were necessary to overcome dormancy and produce the onset of flowering. The calculated dormancy requirements, mean tem - peratures of the four decades of the year, and January and February average NAO index recorded during the period before flowering, were used to construct linear and multiple regression models in order to forecast the start date of the alder pollen seasons Its ac - curacy was tested using data from 2007, and the difference between the predicted and observed dates ranged from 3–7 days

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. Objective: The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and describe the conditions that facilitated this possible long distance transport. Methods: Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Results: Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the air stream moving to Northwest Europe where they were deposited at ground level and recorded by monitoring sites. Conclusions: The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources, but transported long distances from potential source regions in East Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

France, in particular the Rhône-Alpes region, is one of the three main centres of ragweed (Ambrosia) in Europe. The aim of this study is to develop a gridded ragweed pollen source inventory for all of France that can be used in assessments, eradication plans and by atmospheric models for describing concentrations of airborne ragweed pollen. The inventory combines information about spatial variations in annual Ambrosia pollen counts, knowledge of ragweed ecology, detailed land cover information and a Digital Elevation Model. The ragweed inventory consists of a local infection level on a scale of 0–100% (where 100% is the highest plant abundance per area in the studied region) and a European infection level between 0% and 100% (where 100% relates to the highest identified plant abundance in Europe using the same methodology) that has been distributed onto the EMEP grid with 5 km × 5 km resolution. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were recorded at Roussillon in the Rhône-Valley. This is reflected by the inventory, where the European infection level has been estimated to reach 67.70% of the most infected areas in Europe i.e. Kecskemét in central Hungary. The inventory shows that the Rhône Valley is the most heavily infected part of France. Central France is also infected, but northern and western parts of France are much less infected. The inventory can be entered into atmospheric transport models, in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the dispersion of ragweed pollen within France as well as potential long-distance transport from France to other European countries.