3 resultados para Geographic Range
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
There are many species among the Alternaria genus, which hosts on economically important crops causing significant yield losses. Less attention has been paid to fungi hosting on plants constituting substantial components of pastures and meadows. Alternaria spp. spores are also recognised as important allergens. A 7-day volumetric spore trap was used to monitor the concentration of airborne fungal spores. Air samples were collected in Worcester, England (2006–2010). Days with a high spore count were then selected. The longest episode that occurred within a five year study was chosen for modelling. Two source maps presenting distribution of crops under rotation and pastures in the UK were produced. Back trajectories were calculated using the HYSPLIT model. In ArcGIS clusters of trajectories were studied in connection with source maps by including the height above ground level and the speed of the air masses. During the episode no evidence for a long distance transport from the continent of Alternaria spp. spores was detected. The overall direction of the air masses fell within the range from South-West to North. The back trajectories indicated that the most important sources of Alternaria spp. spores were located in the West Midlands of England.
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
The long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains. These episodes are associated with hot dry weather, a deep Planetary Boundary Layer (PBL) in the source areas and winds from the south. Such episodes can transport significant amounts of Ambrosia pollen into Poland. The study investigates Ambrosia pollen episodes at eight sites in Poland during the period 7th to 10th September 2005, by examining temporal variations in Ambrosia pollen and back-trajectories. PBL depths in the likely source areas were calculated with the Eta meteorological model and evaluated against the mountain heights. Considerable amounts of Ambrosia pollen were recorded at several monitoring sites during the night or early in the morning of the investigated period. Trajectory analyses shows that the air masses arriving at the Polish sites predominantly came from the south, and were in the Czech Republic, Slovakia and Hungary the previous day indicating these countries as potential source areas. We have shown the progress of Ambrosia plumes into Poland from the south of the country, probably from Slovakia and Hungary, and demonstrated how Lagrangian back-trajectory models and meteorological models can be used to identify possible transport mechanisms of Ambrosia pollen from potential source regions.