2 resultados para Four-day week.

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 30-day ahead forecast method has been developed for grass pollen at north London. The total period of the grass pollen season is covered by eight multiple regression models, each covering a 10-day period running consecutively from 21st May to 8th August. This means that three models were used for each 30-day forecast. The forecast models were produced using grass pollen and environmental data from 1961-1999 and tested on data from 2000 and 2002. Model accuracy was judged in two ways: the number of times the forecast model was able to successfully predict the severity (relative to the 1961-1999 dataset as a whole) of grass pollen counts in each of the eight forecast periods on a scale of one to four; and the number of times the forecast model was able to predict whether grass pollen counts were higher or lower than the mean. The models achieved 62.5% accuracy in both assessment years when predicting the relative severity of grass pollen counts on a scale of one to four, which equates to six of the eight 10-day periods being forecast correctly. The models attained 87.5% and 100% accuracy in 2000 and 2002 respectively when predicting whether grass pollen counts would be higher or lower than the mean. Attempting to predict pollen counts during distinct 10-day periods throughout the grass pollen season is a novel approach. The models also employed original methodology in the use of winter averages of the North Atlantic Oscillation to forecast 10-day means of allergenic pollen counts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent epidemics of acute asthma have caused speculation that, if their causes were known, early warnings might be feasible. In particular, some epidemics seemed to be associated with thunderstorms. We wondered what risk factors predicting epidemics could be identified. Daily asthma admissions counts during 1987-1994, for two age groups (0-14 yrs and > or = 15 yrs), were measured using the Hospital Episodes System (HES). Epidemics were defined as combinations of date, age group and English Regional Health Authority (RHA) with exceptionally high asthma admission counts compared to the predictions of a log-linear autoregression model. They were compared with control days 1 week before and afterwards, regarding seven meteorological variables and 5 day average pollen counts for four species. Fifty six asthma epidemics were identified. The mean density of sferics (lightning flashes), temperature and rainfall on epidemic days were greater than those on control days. High sferics densities were overrepresented in epidemics. Simultaneously high sferics and grass pollen further increased the probability of an epidemic, but only to 15% (95% confidence interval 2-45%). Two thirds of epidemics were not preceded by thunderstorms. Thunderstorms and high grass pollen levels precede asthma epidemics more often than expected by chance. However, most epidemics are not associated with thunderstorms or unusual weather conditions, and most thunderstorms, even following high grass pollen levels, do not precede epidemics. An early warning system based on the indicators examined here would, therefore, detect few epidemics and generate an unacceptably high rate of false alarms.