6 resultados para FATTY DIET
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.
Resumo:
In Sudanese women with (n = 60) and without (n = 65) pre-eclampsia, circulating lipids, plasma and red cell saturated and monounsaturated fatty (MUFA) acids and dimethyl acetals (DMAs) were investigated. DMAs are an indirect marker of levels of plasmalogens, endogenous antioxidants, which play a critical role in oxidative protection, and cholesterol homeostasis. The pre-eclamptics had higher C18:1n-9 (p < 0.001) and ΣMUFA (p < 0.01) in plasma free fatty acids, C16:1n-7, C18:1n-9, ΣMUFA; 16:0/16:1n-7 (p < 0.01) in erythrocyte choline phosphoglycerides (ePC) and 16:1n-7, 18:1n-7 and 16:0/16:1n-7 (p < 0.01) in erythrocyte ethanolamine phosphoglycerides (ePE). In contrast, the DMAs 18:0, 18:1 and ΣDMAs in ePE, and 16:0, 18:0 and ΣDMAs in ePC were reduced (p < 0.001) in the pre-eclamptic women. This study of pregnant women with high carbohydrate and low fat background diet suggests pre-eclampsia is associated with oxidative stress and enhanced activity of the microsomal enzyme stearyl-CoA desaturase (delta 9 desaturase), as assessed by palmitic/palmitoleic (C16:0/C16:n-1) and stearic/oleic (C18/C18:1n-9) ratios.
Resumo:
Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.
Resumo:
We examine whether feeding pregnant and lactating rats hydrogenated fats rich in trans fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 90-day-old offspring. Pregnant and lactating Wistar rats were fed with either a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). Upon weaning, the male pups were sorted into four groups: CC, mothers were receiving C and pups were kept on C; CT, mothers were receiving C and pups were fed with T; TT, mothers were receiving T and pups were kept on T; TC, mothers were receiving T and pups were fed with C. Pups' food intake and body weight were quantified weekly and the pups were killed at day 90 of life by decapitation. Blood and carcass as well as retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Food intake and body weight were lower in TC and TT, and metabolic efficiency was reduced in TT. Offspring of TT and TC rats had increased white adipose tissue PAI-1 gene expression. Insulin receptor was higher in TT than other groups. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation could promote deleterious consequences, even after the withdrawal of the causal factor.
Resumo:
Background Dietary lipids are directly related to the composition of adipose tissue, aetiology of obesity and arousal of obesity-related pathologies, like chronic inflammation states. Haptoglobin is an acute phase protein secreted by the liver and white adipose tissue, and its blood levels vary according to the volume of fat in the body. Aim of the study To investigate the effect of diets enriched with large amounts of dietary fats, which differ in their fatty acid composition, on the haptoglobin gene expression by visceral and subcutaneous adipose tissue of mice fed for 2 days or 8 weeks. 3T3-L1 cells were treated with fatty acids that are found in those types of dietary fats. Methods Mice were treated acutely (for 2 days) or chronically (for 8 weeks) with diets enriched with soybean oil, fish oil, coconut oil or lard. 3T3-L1 cells were treated with six different fatty acids. Haptoglobin gene expression was quantified by northern blotting. Results Both chronic and acute treatment with lard, which is rich in long chain saturated fatty acids, increased the haptoglobin mRNA expression in the retroperitoneal and epidydimal white adipose tissues. Chronic treatment with coconut oil, which is rich in medium chain saturated fatty acids, increased the haptoglobin expression in the epidydimal and subcutaneous depots. In 3T3-L1, palmitic acid increased the haptoglobin gene expression. Conclusion The type of lipids in the diet can differently modulate the white adipose tissue gene expression of haptoglobin, and saturated fatty acids play a major role in promoting a pro-inflammatory environment. This response is fat pad specific and dependant on the duration of treatment.
Resumo:
On 2 July 2009, the EFSA Panel on Dietetic products, Nutrition and Allergies (NDA) endorsed a draft Opinion on Dietary Reference Values for fats to be released for public consultation. This Scientific Report summarises the comments received through the public consultation and outlines how these were taken into account in the final opinion. EFSA had received contributions from 40 interested parties (individuals, non-governmental organisations, industry organisations, academia and national assessment bodies). The main comments which were received during the public consultation related to: the availability of more recent data, the nomenclature used, the use of a non-European food composition data base, the impact of genetic factors in modulating the absorption, metabolism and health effects of different fatty acids, the definition of “nutritionally adequate diet”, the use of Dietary Reference Values in the labelling of foods, the translation of advice into food-based dietary guidelines, nutrient goals and recommendations, certain risk management issues, and to Dietary Reference Values of fats, individual fatty acids, and cholesterol. All the public comments received that related to the remit of EFSA were assessed and the Opinion on Dietary Reference Values for fats has been revised taking relevant comments into consideration.