3 resultados para ELEVATION
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
France, in particular the Rhône-Alpes region, is one of the three main centres of ragweed (Ambrosia) in Europe. The aim of this study is to develop a gridded ragweed pollen source inventory for all of France that can be used in assessments, eradication plans and by atmospheric models for describing concentrations of airborne ragweed pollen. The inventory combines information about spatial variations in annual Ambrosia pollen counts, knowledge of ragweed ecology, detailed land cover information and a Digital Elevation Model. The ragweed inventory consists of a local infection level on a scale of 0–100% (where 100% is the highest plant abundance per area in the studied region) and a European infection level between 0% and 100% (where 100% relates to the highest identified plant abundance in Europe using the same methodology) that has been distributed onto the EMEP grid with 5 km × 5 km resolution. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were recorded at Roussillon in the Rhône-Valley. This is reflected by the inventory, where the European infection level has been estimated to reach 67.70% of the most infected areas in Europe i.e. Kecskemét in central Hungary. The inventory shows that the Rhône Valley is the most heavily infected part of France. Central France is also infected, but northern and western parts of France are much less infected. The inventory can be entered into atmospheric transport models, in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the dispersion of ragweed pollen within France as well as potential long-distance transport from France to other European countries.
Resumo:
Quantifying the topography of rivers and their associated bedforms has been a fundamental concern of fluvial geomorphology for decades. Such data, acquired at high temporal and spatial resolutions, are increasingly in demand for process-oriented investigations of flow hydraulics, sediment dynamics and in-stream habitat. In these riverine environments, the most challenging region for topographic measurement is the wetted, submerged channel. Generally, dry bed topography and submerged bathymetry are measured using different methods and technology. This adds to the costs, logistical challenges and data processing requirements of comprehensive river surveys. However, some technologies are capable of measuring the submerged topography. Through-water photogrammetry and bathymetric LiDAR are capable of reasonably accurate measurements of channel beds in clear water. Whilst the cost of bathymetric LiDAR remains high and its resolution relatively coarse, the recent developments in photogrammetry using Structure from Motion (SfM) algorithms promise a fundamental shift in the accessibility of topographic data for a wide range of settings. Here we present results demonstrating the potential of so called SfM-photogrammetry for quantifying both exposed and submerged fluvial topography at the mesohabitat scale. We show that imagery acquired from a rotary-winged Unmanned Aerial System (UAS) can be processed in order to produce digital elevation models (DEMs) with hyperspatial resolutions (c. 0.02 m) for two different river systems over channel lengths of 50-100 m. Errors in submerged areas range from 0.016 m to 0.089 m, which can be reduced to between 0.008 m and 0.053 m with the application of a simple refraction correction. This work therefore demonstrates the potential of UAS platforms and SfM-photogrammetry as a single technique for surveying fluvial topography at the mesoscale (defined as lengths of channel from c.10 m to a few hundred metres). This article is protected by copyright. All rights reserved.
Resumo:
This study improves the spatial coverage of top-down Ambrosia pollen source inventories for Europe by expanding the methodology to Austria, a country that is challenging in terms of topography and the distribution of ragweed plants. The inventory combines annual ragweed pollen counts from 19 pollen-monitoring stations in Austria (2004–2013), 657 geographical observations of Ambrosia plants, a Digital Elevation Model (DEM), local knowledge of ragweed ecology and CORINE land cover information from the source area. The highest mean annual ragweed pollen concentrations were generally recorded in the East of Austria where the highest densities of possible growth habitats for Ambrosia were situated. Approximately 99% of all observations of Ambrosia populations were below 745 m. The European infection level varies from 0.1% at Freistadt in Northern Austria to 12.8% at Rosalia in Eastern Austria. More top-down Ambrosia pollen source inventories are required for other parts of Europe.