2 resultados para DISTRIBUTION MODELS

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological studies that examine species-environment relationships are often limited to several meteorological parameters, i.e. mean air temperature, relative humidity, precipitation, vapour pressure deficit and solar radiation. The impact of local wind, its speed and direction are less commonly investigated in aerobiological surveys mainly due to difficulties related to the employment of specific analytical tools and interpretation of their outputs. Identification of inoculum sources of economically important plant pathogens, as well as highly allergenic bioaerosols like Cladosporium species, has not been yet explored with remote sensing data and atmospheric models such as Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT). We, therefore, performed an analysis of 24 h intra-diurnal cycle of Cladosporium spp. spores from an urban site in connection with both the local wind direction and overall air mass direction computed by HYSPLIT. The observational method was a volumetric air sampler of the Hirst design with 1 h time resolution and corresponding optical detection of fungal spores with light microscopy. The atmospheric modelling was done using the on-line data set from GDAS with 1° resolution and circular statistical methods. Our results showed stronger, statistically significant correlation (p ≤ 0.05) between high Cladosporium spp. spore concentration and air mass direction compared to the local wind direction. This suggested that a large fraction of the investigated fungal spores had a regional origin and must be located more than a few kilometers away from the sampling point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-surface air temperature is an important determinant of the surface energy balance of glaciers and is often represented by a constant linear temperature gradients (TGs) in models. Spatiotemporal variability in 2 m air temperature was measured across the debris-covered Miage Glacier, Italy, over an 89 d period during the 2014 ablation season using a network of 19 stations. Air temperature was found to be strongly dependent upon elevation for most stations, even under varying meteorological conditions and at different times of day, and its spatial variability was well explained by a locally derived mean linear TG (MG–TG) of −0.0088°C m−1. However, local temperature depressions occurred over areas of very thin or patchy debris cover. The MG–TG, together with other air TGs, extrapolated from both on- and off-glacier sites, were applied in a distributed energy-balance model. Compared with piecewise air temperature extrapolation from all on-glacier stations, modelled ablation, using the MG–TG, increased by <1%, increasing to >4% using the environmental ‘lapse rate’. Ice melt under thick debris was relatively insensitive to air temperature, while the effects of different temperature extrapolation methods were strongest at high elevation sites of thin and patchy debris cover.