9 resultados para D901 Europe (General)

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this paper are to ascertain the main factors involved in the phenological mechanism of alder flowering in Central Europe by understanding the in - fluence of the main meteorological parameters, the North Atlantic Oscillation (NAO) effect and the study of the Chill and Heat requirements to overcome dormancy. Airborne pollen (1995–2007) was collected in Poznań (Poland) by means a volumetric spore trap. Temperatures for February, and January and February averages of the NAO are generally key factors affecting the timing of the alder pollen seasons. Chilling accumulation (which started in Poznań at the beginning of November, while the end took place during the month of January) of 985 CH with a threshold temperature of -0.25ºC, followed by 118 GDDºC with a threshold temperature of 0.5ºC, were necessary to overcome dormancy and produce the onset of flowering. The calculated dormancy requirements, mean tem - peratures of the four decades of the year, and January and February average NAO index recorded during the period before flowering, were used to construct linear and multiple regression models in order to forecast the start date of the alder pollen seasons Its ac - curacy was tested using data from 2007, and the difference between the predicted and observed dates ranged from 3–7 days

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common or short ragweed (Ambrosia artemisiifolia L.) is an annual herb belonging to the Asteraceae family that was described by Carl Linnaeus in the 18th century. It is a noxious invasive species that is an important weed in agriculture and a source of highly allergenic pollen. The importance placed on A. artemisiifolia is reflected by the number of international projects that have now been launched by the European Commission and the increasing number of publications being produced on this topic. This review paper examines existing knowledge about ragweed ecology, distribution and flowering phenology and the environmental health risk that this noxious plant poses in Europe. The paper also examines control measures used in the fight against it and state of the art methods for modelling atmospheric concentrations of this important aeroallergen. Common ragweed is an environmental health threat, not only in its native North America but also in many parts of the world where it has been introduced. In Europe, where the plant has now become naturalised and frequently forms part of the flora, the threat posed by ragweed has been identified and steps are being taken to reduce further geographical expansion and limit increases in population densities of the plant in order to protect the allergic population. This is particularly important when one considers possible range shifts, changes in flowering phenology and increases in the amount of pollen and allergenic potency that could be brought about by changes in climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

France, in particular the Rhône-Alpes region, is one of the three main centres of ragweed (Ambrosia) in Europe. The aim of this study is to develop a gridded ragweed pollen source inventory for all of France that can be used in assessments, eradication plans and by atmospheric models for describing concentrations of airborne ragweed pollen. The inventory combines information about spatial variations in annual Ambrosia pollen counts, knowledge of ragweed ecology, detailed land cover information and a Digital Elevation Model. The ragweed inventory consists of a local infection level on a scale of 0–100% (where 100% is the highest plant abundance per area in the studied region) and a European infection level between 0% and 100% (where 100% relates to the highest identified plant abundance in Europe using the same methodology) that has been distributed onto the EMEP grid with 5 km × 5 km resolution. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were recorded at Roussillon in the Rhône-Valley. This is reflected by the inventory, where the European infection level has been estimated to reach 67.70% of the most infected areas in Europe i.e. Kecskemét in central Hungary. The inventory shows that the Rhône Valley is the most heavily infected part of France. Central France is also infected, but northern and western parts of France are much less infected. The inventory can be entered into atmospheric transport models, in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the dispersion of ragweed pollen within France as well as potential long-distance transport from France to other European countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. Objective. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. Methods. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. Results. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. Conclusions. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future changes in population exposures to ambient air pollution are inherently linked with long-term trends in outdoor air quality, but also with changes in the building stock. Moreover, the burden of disease is further driven by the ageing of the European populations. This study aims to assess the impact of changes in climate, emissions, building stocks and population on air pollution related human health impacts across Europe in the future. Therefore an integrated assessment model combining atmospheric models and health impacts has been setup for projections of the future developments in air pollution related premature mortality. The focus is here on the regional scale impacts of exposure to surface ozone (O3), Secondary Inorganic Aerosols (SIA) and primary particulate matter (PPM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. Objective: The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and describe the conditions that facilitated this possible long distance transport. Methods: Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Results: Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the air stream moving to Northwest Europe where they were deposited at ground level and recorded by monitoring sites. Conclusions: The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources, but transported long distances from potential source regions in East Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant . Location: The full range of Ambrosia artemisiifolia L. distribution over Europe (39oN-60oN; 2oW-45oE). Methods: Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August-September) recorded during a 10-year period (2004-2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and Standard Deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p < 0.05. Results: There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen was recorded in the air). Main conclusions: The direction of any trends varied locally and reflect changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.