4 resultados para Cumulative trauma disorder
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
BACKGROUND: Affective instability (AI), childhood trauma, and mental illness are linked, but evidence in affective disorders is limited, despite both AI and childhood trauma being associated with poorer outcomes. Aims were to compare AI levels in bipolar disorder I (BPI) and II (BPII), and major depressive disorder recurrent (MDDR), and to examine the association of AI and childhood trauma within each diagnostic group. METHODS: AI, measured using the Affective Lability Scale (ALS), was compared between people with DSM-IV BPI (n=923), BPII (n=363) and MDDR (n=207) accounting for confounders and current mood. Regression modelling was used to examine the association between AI and childhood traumas in each diagnostic group. RESULTS: ALS scores in descending order were BPII, BPI, MDDR, and differences between groups were significant (p<0.05). Within the BPI group any childhood abuse (p=0.021), childhood physical abuse (p=0.003) and the death of a close friend in childhood (p=0.002) were significantly associated with higher ALS score but no association was found between childhood trauma and AI in BPII and MDDR. LIMITATIONS: The ALS is a self-report scale and is subject to retrospective recall bias. CONCLUSIONS: AI is an important dimension in bipolar disorder independent of current mood state. There is a strong link between childhood traumatic events and AI levels in BPI and this may be one way in which exposure and disorder are linked. Clinical interventions targeting AI in people who have suffered significant childhood trauma could potentially change the clinical course of bipolar disorder.
Resumo:
Background and Aims Affective instability (AI), childhood trauma, and mental illness are linked, but evidence in affective disorders is limited, despite both AI and childhood trauma being associated with poorer outcomes. Aims were to compare AI levels in bipolar disorder I (BPI) and II (BPII), and major depressive disorder recurrent (MDDR), and to examine the association of AI and childhood trauma within each diagnostic group. Methods AI, measured using the Affective Lability Scale (ALS), was compared between people with DSM-IV BPI (n = 923), BPII (n = 363) and MDDR (n = 207) accounting for confounders and current mood. Regression modelling was used to examine the association between AI and childhood traumas in each diagnostic group. Results ALS scores in descending order were BPII, BPI, MDDR, and differences between groups were significant (p < 0.05). Within the BPI group any childhood abuse (p = 0.021), childhood physical abuse (p = 0.003) and the death of a close friend in childhood (p = 0.002) were significantly associated with higher ALS score but no association was found between childhood trauma and AI in BPII and MDDR. Conclusions AI is an important dimension in bipolar disorder independent of current mood state. There is a strong link between childhood traumatic events and AI levels in BPI and this may be one way in which exposure and disorder are linked. Clinical interventions targeting AI in people who have suffered significant childhood trauma could potentially change the clinical course of bipolar disorder.
Resumo:
Major depressive disorder (MDD) is a common and disabling condition with well-established heritability and environmental risk factors. Gene–environment interaction studies in MDD have typically investigated candidate genes, though the disorder is known to be highly polygenic. This study aims to test for interaction between polygenic risk and stressful life events (SLEs) or childhood trauma (CT) in the aetiology of MDD. The RADIANT UK sample consists of 1605 MDD cases and 1064 controls with SLE data, and a subset of 240 cases and 272 controls with CT data. Polygenic risk scores (PRS) were constructed using results from a mega-analysis on MDD by the Psychiatric Genomics Consortium. PRS and environmental factors were tested for association with case/control status and for interaction between them. PRS significantly predicted depression, explaining 1.1% of variance in phenotype (p = 1.9 × 10−6). SLEs and CT were also associated with MDD status (p = 2.19 × 10−4 and p = 5.12 × 10−20, respectively). No interactions were found between PRS and SLEs. Significant PRSxCT interactions were found (p = 0.002), but showed an inverse association with MDD status, as cases who experienced more severe CT tended to have a lower PRS than other cases or controls. This relationship between PRS and CT was not observed in independent replication samples. CT is a strong risk factor for MDD but may have greater effect in individuals with lower genetic liability for the disorder. Including environmental risk along with genetics is important in studying the aetiology of MDD and PRS provide a useful approach to investigating gene–environment interactions in complex traits.
Resumo:
Lithium is the mainstay prophylactic treatment for bipolar disorder (BD), but treatment response varies considerably across individuals. Patients who respond well to lithium treatment might represent a relatively homogeneous subtype of this genetically and phenotypically diverse disorder. Here, we performed genome-wide association studies (GWAS) to identify (i) specific genetic variations influencing lithium response and (ii) genetic variants associated with risk for lithium-responsive BD. Patients with BD and controls were recruited from Sweden and the United Kingdom. GWAS were performed on 2698 patients with subjectively defined (self-reported) lithium response and 1176 patients with objectively defined (clinically documented) lithium response. We next conducted GWAS comparing lithium responders with healthy controls (1639 subjective responders and 8899 controls; 323 objective responders and 6684 controls). Meta-analyses of Swedish and UK results revealed no significant associations with lithium response within the bipolar subjects. However, when comparing lithium-responsive patients with controls, two imputed markers attained genome-wide significant associations, among which one was validated in confirmatory genotyping (rs116323614, P=2.74 × 10-8). It is an intronic single-nucleotide polymorphism (SNP) on chromosome 2q31.2 in the gene SEC14 and spectrin domains 1 (SESTD1), which encodes a protein involved in regulation of phospholipids. Phospholipids have been strongly implicated as lithium treatment targets. Furthermore, we estimated the proportion of variance for lithium-responsive BD explained by common variants ('SNP heritability') as 0.25 and 0.29 using two definitions of lithium response. Our results revealed a genetic variant in SESTD1 associated with risk for lithium-responsive BD, suggesting that the understanding of BD etiology could be furthered by focusing on this subtype of BD.