2 resultados para Connected sum of surfaces

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this study was to analyse the temporal and spatial variations in grass (Poaceae) pollen counts (2005–2011) recorded in Évora (Portugal), Badajoz (Spain) and Worcester (UK). Weekly average data were examined using nonparametric statistics to compare differences between places. On average, Évora recorded the earliest start dates of the Poaceae pollen seasons and Worcester the latest. The intensity of the Poaceae pollen season varied between sites, with Worcester usually recording the least and Évora the most grass pollen in a season. Mean durations of grass pollen seasons were 77 days in Évora, 78 days in Badajoz and 59 days in Worcester. Overall, longer Poaceae pollen seasons coincided with earlier pollen season start dates. Weekly pollen data, from March to September, from the three pollen-monitoring stations studied were compared. The best fit and most statistically significant correlations were obtained by moving Worcester data backward by 4 weeks (Évora, r = 0.810, p < 0.001) and 5 weeks (Badajoz,r = 0.849, p < 0.001). Weekly data from Worcester therefore followed a similar pattern to that of Badajoz and Évora but at a distance of more than 1,500 km and 4–5 weeks later. The sum of pollen recorded in a season was compared with monthly rainfall between January and May. The strongest positive relationship between season intensity and rainfall was between the annual sum of Poaceae pollen recorded in the season at Badajoz and Évora and total rainfall during January and February. Winter rainfall noticeably affects the intensity of Poaceae pollen seasons in Mediterranean areas, but this was not as important in Worcester.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study determined annual and monthly fluctuations in concentration of 20 fungal genera. The selection of taxa was made based upon their high frequency in the air as well as their well-known allergenic properties. Air samples were collected using a spore trap of Hirst design at an urban site where the trap continuously worked throughout a 5-year survey. Weather data were acquired from a meteorological station co-located with the air sampler. Influence of several meteorological parameters was then examined to reveal species–environment interactions and the potential location of fungal spore sources within the urban area. The maximum monthly sum of mean daily spore concentration varied between genera, and the earliest peaks were recorded for Pleospora sp. in April and Ustilago sp. in June. However, the majority of investigated spore types occurred in the greatest concentrations between August and September. Out of the 20 studied taxa, the most dominant genus was Cladosporium sp., which exceeded an allergenic threshold of 3000 s m-3 40 times during very rainy years and twice as much during dry years. A Spearman’s rank test showed that statistically significant (p B 0.05) relationships between spore concentration and weather parameters were mainly rs B 0.50. Potential sources of spores at Worcester were likely to be localised outside the city area.