2 resultados para Climate-Vegetation Relationships
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.
Resumo:
Climate change will exacerbate challenges facing food security in the UK. Increasing frequency and intensity of extreme weather events will further impact upon farm systems. At the heart of the impending challenges to UK agricultural production, farmers’ resilience will be tested to new limits. Research into farmers’ resilience to climate change in the UK is distinctly underdeveloped when compared to research in developing and other developed nations. This research gap is addressed through exploration of farmers’ resilience in the Welsh Marches, establishing the role of risk perceptions, local knowledge and adaptive capacity in farmers’ decision-making to limit climate shocks. Further contributions to agricultural geography are made through experimentation of a ‘cultural-behavioural approach’, seeking to revisit the behavioural approach in view of the cultural-turn. The Welsh Marches, situated on the English-Welsh border, has been selected as a focal point due to its agricultural diversity, and known experiences of extreme weather events. A phased mixed methodological approach is adopted. Phase one explores recorded and reported experiences of past extreme weather events in local meteorological records and local newspaper articles. Phase two consists of 115 survey-questionnaires, 15 in-depth semi-structured interviews, and a scenario based focus group with selected farmers from the Welsh Marches. This allows farmers’ resilience to climate change in the past, present and future to be explored. Original contributions to knowledge are made through demonstrating the value of focusing upon the culture of a specific farm community, applying a ‘bottom-up’ approach. The priority given to the weather in farmers’ decision-making is identified to be determined by individual relationships that farmers’ develop with the weather. Yet, a consensus of farmers’ observations has established recognition of considerable changes in the weather over the last 30 years, acknowledging more extremes and seasonal variations. In contrast, perceptions of future climate change are largely varied. Farmers are found to be disengaged with the communication of climate change science, as the global impacts portrayed are distant in time and place from probable impacts that may be experienced locally. Current communication of climate change information has been identified to alienate farmers from the local reality of probable future impacts. Adaptation options and responses to extreme weather and climate change are identified from measures found to be already implemented and considered for the future. A greater need to explore local knowledge and risk perception in relation to farmers’ understanding of future climate challenges is clear. There is a need to conduct comparable research in different farm communities across the UK. Progression into establishing the role of farmers’ resilience in responding effectively to future climate challenges has only just begun.