4 resultados para Climate-Vegetation Relationships

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work on Betula spp. (birch) in the UK and at five sites in Europe has shown that pollen seasons for this taxon have tended to become earlier by about 5–10 days per decade in most regions investigated over the last 30 years. This pattern has been linked to the trend to warmer winters and springs in recent years. However, little work has been done to investigate the changes in the pollen seasons for the early flowering trees. Several of these, such as Alnus spp. and Corylus spp., have allergens, which cross-react with those of Betula spp., and so have a priming effect on allergic people. This paper investigates pollen seasons for Alnus spp. and Corylus spp. for the years 1996–2005 at Worcester, in the West Midlands, United Kingdom. Pollen data for daily average counts were collected using a Burkard volumetric trap sited on the exposed roof of a three-storey building. The climate is western maritime. Meteorological data for daily temperatures (maximum and minimum) and rainfall were obtained from the local monitoring sites. The local area up to approximately 10 km surrounding the site is mostly level terrain with some undulating hills and valleys. The local vegetation is mixed farmland and deciduous woodland. The pollen seasons for the two taxa investigated are typically late December or early January to late March. Various ways of defining the start and end of the pollen seasons were considered for these taxa, but the most useful was the 1% method whereby the season is deemed to have started when 1% of the total catch is achieved and to have ended when 99% is reached. The cumulative catches (in grains/m3) for Alnus spp. varied from 698 (2001) to 3,467 (2004). For Corylus spp., they varied from 65 (2001) to 4,933 (2004). The start dates for Alnus spp. showed 39 days difference in the 10 years (earliest 2000 day 21, latest 1996 day 60). The end dates differed by 26 days and the length of season differed by 15 days. The last 4 years in the set had notably higher cumulative counts than the first 2, but there was no trend towards earlier starts. For Corylus spp. start days also differed by 39 days (earliest 1999 day 5, latest 1996 day 44). The end date differed by 35 days and length of season by 26 days. Cumulative counts and lengths of season showed a distinct pattern of alternative high (long) and low (short) years. There is some evidence of a synchronous pattern for Alnus spp.. These patterns show some significant correlations with temperature and rainfall through the autumn, winter and early spring, and some relationships with growth degree 4s and chill units, but the series is too short to discern trends. The analysis has provided insight to the variation in the seasons for these early flowering trees and will form a basis for future work on building predictive models for these taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of climate change on fungal growth and spore production is less well documented than for allergenic pollen grains, although similar implications for respiratory tract diseases in humans occur. Fungal spores are commonly described as either “dry” or “wet” according to the type of weather associated with their occurrence in the air. This study examined the distribution of selected fungal spores (Alternaria spp., Cladosporium spp., Didymella spp., Epicoccum spp., Leptosphaeria spp. and rusts) occurring in the West Midlands of UK during 2 years of contrasting weather. Spore specimens were collected using a 7-day volumetric air sampler and then analysed with the aid of light microscopy. Distributions of spores were then studied using normality tests and Mann–Whitney U test, while relationships with meteorological parameters were investigated using Spearman’s rank test and angular-linear correlation for wind direction analysis. Our results showed that so-called wet spores were more sensitive to the weather changes showing statistically significant differences between the 2 years of study, in contrast to “dry” spores. We predict that in following years we will observe accelerated levels in allergenic fungal spore production as well as changes in species diversity. This study could be a starting point to revise the grouping system of fungal spores as either “dry” or “wet” types and their response to climate change

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change will exacerbate challenges facing food security in the UK. Increasing frequency and intensity of extreme weather events will further impact upon farm systems. At the heart of the impending challenges to UK agricultural production, farmers’ resilience will be tested to new limits. Research into farmers’ resilience to climate change in the UK is distinctly underdeveloped when compared to research in developing and other developed nations. This research gap is addressed through exploration of farmers’ resilience in the Welsh Marches, establishing the role of risk perceptions, local knowledge and adaptive capacity in farmers’ decision-making to limit climate shocks. Further contributions to agricultural geography are made through experimentation of a ‘cultural-behavioural approach’, seeking to revisit the behavioural approach in view of the cultural-turn. The Welsh Marches, situated on the English-Welsh border, has been selected as a focal point due to its agricultural diversity, and known experiences of extreme weather events. A phased mixed methodological approach is adopted. Phase one explores recorded and reported experiences of past extreme weather events in local meteorological records and local newspaper articles. Phase two consists of 115 survey-questionnaires, 15 in-depth semi-structured interviews, and a scenario based focus group with selected farmers from the Welsh Marches. This allows farmers’ resilience to climate change in the past, present and future to be explored. Original contributions to knowledge are made through demonstrating the value of focusing upon the culture of a specific farm community, applying a ‘bottom-up’ approach. The priority given to the weather in farmers’ decision-making is identified to be determined by individual relationships that farmers’ develop with the weather. Yet, a consensus of farmers’ observations has established recognition of considerable changes in the weather over the last 30 years, acknowledging more extremes and seasonal variations. In contrast, perceptions of future climate change are largely varied. Farmers are found to be disengaged with the communication of climate change science, as the global impacts portrayed are distant in time and place from probable impacts that may be experienced locally. Current communication of climate change information has been identified to alienate farmers from the local reality of probable future impacts. Adaptation options and responses to extreme weather and climate change are identified from measures found to be already implemented and considered for the future. A greater need to explore local knowledge and risk perception in relation to farmers’ understanding of future climate challenges is clear. There is a need to conduct comparable research in different farm communities across the UK. Progression into establishing the role of farmers’ resilience in responding effectively to future climate challenges has only just begun.