14 resultados para Central Poland

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995–2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using backtrajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Artemisia species pollen represents a major cause of allergy in Central Europe. Variations in the pollen season, the influence of climate variables and the prevalence of pollinosis to it were analyzed in Poznan, in western Poland between 1995 and 2004. Methods: A Hirst volumetric spore trap was used for atmospheric sampling. Pollination date trend analysis and Spearman correlation tests were performed. Skin prick tests (SPT) and allergen specific immunoglobulin (Ig)E antibody measurements were performed in 676 and 524 patients, respectively. Results: The Artemisia species pollen season grew longer due to a clear advance in the starting day and only a slightly earlier end point; the peak day also came slightly earlier. Rainfall in the fi rst fortnight of July highly influenced pollen season severity. Temperature was directly correlated with daily Artemisia species pollen levels; relative humidity was inversely correlated. Twelve percent of patients had a positive SPT reaction to Artemisia species. Their symptoms were rhinitis and conjunctivitis (15%), atopic dermatitis (15%), chronic urticaria (14.3%), bronchial asthma (2.4%), and facial and disseminated dermatitis (1.3%). Elevated specifi c IgE concentrations were detected in the sera of 10.1% of patients. Conclusions: Artemisia species pollen is an important cause of pollinosis in western Poland. Pollen season intensity is highly influenced by rainfall in the previous weeks. Trends towards earlier season starts and longer duration, possibly caused by climate change, may have an impact on the allergic population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this paper are to ascertain the main factors involved in the phenological mechanism of alder flowering in Central Europe by understanding the in - fluence of the main meteorological parameters, the North Atlantic Oscillation (NAO) effect and the study of the Chill and Heat requirements to overcome dormancy. Airborne pollen (1995–2007) was collected in Poznań (Poland) by means a volumetric spore trap. Temperatures for February, and January and February averages of the NAO are generally key factors affecting the timing of the alder pollen seasons. Chilling accumulation (which started in Poznań at the beginning of November, while the end took place during the month of January) of 985 CH with a threshold temperature of -0.25ºC, followed by 118 GDDºC with a threshold temperature of 0.5ºC, were necessary to overcome dormancy and produce the onset of flowering. The calculated dormancy requirements, mean tem - peratures of the four decades of the year, and January and February average NAO index recorded during the period before flowering, were used to construct linear and multiple regression models in order to forecast the start date of the alder pollen seasons Its ac - curacy was tested using data from 2007, and the difference between the predicted and observed dates ranged from 3–7 days

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Weather Research and Forecasting model, integrated online with chemistry module, is a multi-scale model suitable for both research and operational forecasts of meteorology and air quality. It is used by many institutions for a variety of applications. In this study, the WRF v3.5 with chemistry (WRF-Chem) is applied to the area of Poland, for a period of 3-20 July 2006, when high concentrations of ground level ozone were observed. The meteorological and chemistry simulations were initiated with ERA-Interim reanalysis and TNO MACC II emissions database, respectively. The model physical parameterization includes RRTM shortwave radiation, Kain-Fritsch cumulus scheme, Purdue Lin microphysics and ACM2 PBL, established previously as the optimal configuration. Chemical mechanism used for the study was RADM2 with MADE/SORGAM aerosols. Simulations were performed for three one-way nested domains covering Europe (36 km x 36 km), Central Europe (12 km x 12 km) and Poland (4 km x 4 km). The results from the innermost domain were analyzed and compared to measurements of ozone concentration at three stations in different environments. The results show underestimation of observed values and daily amplitude of ozone concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily average Alnus pollen counts (1996-2005) from Worcester (UK) and Poznań (Poland) were examined with the aim of assessing the regional importance of Alnus pollen as an aeroallergen. The average number of Alnus pollen grains recorded annually at Poznań was more than 2.5 times that of Worcester. Furthermore, daily average Alnus pollen counts exceeded the thresholds of 100, 500 and 1,000 grains/m3 more times at Poznań than Worcester. Skin prick test results (1996-2005) and allergen-specific IgE(asIgE) measurements using the CAP (Pharmacia) system (2002-2005), were supplied by the Allergic Diseases Diagnostic Centre in Poznań. The annual number of positive skin prick tests to Alnus pollen allergens was significantly related (p<0.05) to seasonal variations in the magnitude of the Alnus pollen catch recorded at Poznań (r=0.70). The symptoms of patients with positive skin prick tests to Alnus pollen allergens were: 51% pollinosis, 43% atopic dermatitis, 4% asthma, 1% chronic urticaria and 1% eczema. On a scale of 0-6, 20.5% of patients examined for serum asIgE in relation to Alnus pollen allergens had asIgE measurements in classes 5 and 6. Alnus pollen is generally considered to be mildly allergenic. However, the amount of Alnus pollen released into the atmosphere in places such as Poznań may increase its impact on the population and make it one of the more important aeroallergens present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to analyse variations in the severity of Betula pollen seasons, particularly in relation to meteorological parameters at four sites, Poznań and Krakow in Poland and Worcester and London in the United Kingdom. Results show that there is a significant relationship between Betula pollen season severity and weather conditions in the year before pollination as well as conditions in the same year that pollen is released from the plant. Furthermore, it is likely that the magnitude of birch pollen seasons in Poznań, Worcester and London is linked in some way to different phases of the North Atlantic Oscillation (NAO). Significant positive relationships exist between birch pollen counts at Poznań and temperatures, rainfall and averages of the NAO in the year before pollination. An opposite relationship is evident at the two sites studied in the British Isles. There were significant positive correlations between the severity of birch pollen seasons recorded at Worcester and London and temperatures and averages of the NAO during the year of pollination, and negative correlations with similar variables from the previous year. In addition, Betula pollen seasons in Krakow do not appear to be influenced by the NAO, which is probably the result of Krakow having a more continental climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne concentrations of Poaceae pollen have been monitored in Poznań for more than ten years and the length of the dataset is now considered sufficient for statistical analysis. The objective of this paper is to produce long-range forecasts that predict certain characteristics of the grass pollen season (such as the start, peak and end dates of the grass pollen season) as well as short-term forecasts that predict daily variations in grass pollen counts for the next day or next few days throughout the main grass pollen season. The method of forecasting was regression analysis. Correlation analysis was used to examine the relationship between grass pollen counts and the factors that affect its production, release and dispersal. The models were constructed with data from 1994-2004 and tested on data from 2005 and 2006. The forecast models predicted the start of the grass pollen season to within 2 days and achieved 61% and 70% accuracy on a scale of 1-4 when forecasting variations in daily grass pollen counts in 2005 and 2006 respectively. This study has emphasised how important the weather during the few weeks or months preceding pollination is to grass pollen production, and draws attention to the importance of considering large-scale patterns of climate variability (indices of the North Atlantic Oscillation) when constructing forecast models for allergenic pollen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains. These episodes are associated with hot dry weather, a deep Planetary Boundary Layer (PBL) in the source areas and winds from the south. Such episodes can transport significant amounts of Ambrosia pollen into Poland. The study investigates Ambrosia pollen episodes at eight sites in Poland during the period 7th to 10th September 2005, by examining temporal variations in Ambrosia pollen and back-trajectories. PBL depths in the likely source areas were calculated with the Eta meteorological model and evaluated against the mountain heights. Considerable amounts of Ambrosia pollen were recorded at several monitoring sites during the night or early in the morning of the investigated period. Trajectory analyses shows that the air masses arriving at the Polish sites predominantly came from the south, and were in the Czech Republic, Slovakia and Hungary the previous day indicating these countries as potential source areas. We have shown the progress of Ambrosia plumes into Poland from the south of the country, probably from Slovakia and Hungary, and demonstrated how Lagrangian back-trajectory models and meteorological models can be used to identify possible transport mechanisms of Ambrosia pollen from potential source regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The pollen grains of Ambrosia spp. are considered to be important aeroallergens. Previous studies have shown that the long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains from sources to the south, e.g. the Czech Republic, Slovakia and Hungary. In this study, Ambrosia pollen counts and back-trajectories from specific episodes in 1999 and 2002 have been analysed with the aim of identifying possible new sources of Ambrosia pollen arriving at three sites in Poland. Method: The combination of Ambrosia pollen measurements (daily average and bi-hourly concentrations) and air mass trajectory calculations were used to investigate two Ambrosia pollen episodes recorded at Rzeszow, Krakow and Poznań on the 4th and 5th September 1999 and 3rd September 2002. Ambrosia pollen counts were recorded by volumetric spore traps of the Hirst design. Trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Results: The collective results of pollen measurements and back-trajectory analysis indicate plumes of Ambrosia pollen travelling up through Poland from the southeast during the investigated episodes. In 1999, the plume was first recorded at Rzeszow in Southeastern Poland during the morning of the 4th September. Its route can be followed as it passed Krakow during the afternoon of the 4th, and later on the 4th and 5th September at Poznań. Similarly, back-trajectories calculated during the morning and afternoon from Krakow and Rzeszow on the 3rd September 2002 indicates that the air masses arrived at these sites from the East or Southeast. Conclusion: This study shows the progress of Ambrosia plumes into Poland from the southeast. Ambrosia pollen release occurs mainly during the day and so a midday peak in Ambrosia pollen concentrations may indicate a local source. However, if the plume of Ambrosia pollen tracked along its northwesterly path over Poland during investigated episodes did not originate from inside Poland, then it is likely that it came from the Ukraine. This identifies a possible new source of ragweed pollen for Poland. Trajectory analysis can only show the path along which an air mass travels, not the specific source area. Further investigation could therefore include source based transport models such as 3D Eulerian atmospheric transport models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that ragweed pollen arrives in Poland from sources in the south, in Slovakia, the Czech Republic, Hungary and Austria. It is likely that ragweed pollen also arrives from sources in the southeast (e.g. Ukraine). This hypothesis is investigated using 13-years of pollen data and back-trajectory analysis. Ambrosia pollen data were collected at three sites in Poland, Rzeszów, Kraków and Poznań. The amount of ragweed pollen recorded at Rzeszów was significantly higher than in Poznań and Kraków. This can be related to either a higher abundance of local populations of Ambrosia in south-east Poland or the nearness of Rzeszów to foreign sources of ragweed pollen. The combined results of pollen measurements and air mass trajectory calculations identified plumes of Ambrosia pollen that were recorded at Rzeszów, Kraków and Poznań on the 4th and 5th September 1999 and the 3rd September 2002. These plumes arrived at the pollen-monitoring sites from an easterly direction indicating sources of Ambrosia pollen in eastern Poland or Ukraine. This identifies Ukraine as a possible new source of ragweed pollen for Poland and therefore an important source area of Ambrosia pollen on the European Continent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one way nested domains using the GFS meteorological data and the TNO MACC II emissions. Forecasts, with 48h lead time, were run for a winter and summer period 2014. WRF-Chem in general captures the variability in observed PM10 concentrations, but underestimates some peak concentrations during winter-time. The peaks coincide with either stable atmospheric condition during nighttime in the lower part of the planetary boundary layer or on days with very low surface temperatures. Such episodes lead to increased combustion in residential heating, where hard coal is the main fuel in Poland. This suggests that a key to improvement in the model performance for the peak concentrations is to focus on the simulation of PBL processes and the distribution of emissions with high resolution in WRF-Chem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about −8.0 to −2.0 W m−2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m−3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than −5.0 W m−2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10 concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. Objective: The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and describe the conditions that facilitated this possible long distance transport. Methods: Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Results: Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the air stream moving to Northwest Europe where they were deposited at ground level and recorded by monitoring sites. Conclusions: The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources, but transported long distances from potential source regions in East Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.