7 resultados para Carlsbergfondet (Copenhagen, Denmark)
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
Background. Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. Objective. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. Methods. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. Results. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. Conclusions. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.
Resumo:
Geographical and temporal variations in the start dates of grass pollen seasons are described for selected sites of the European Pollen Information Service. Daily average grass pollen counts are derived from Network sites in Finland, the Netherlands, Denmark, United Kingdom, Austria, Italy and Spain, giving a broad longitudinal transect over Western Europe. The study is part of a larger project that also examines annual and regional variations in the severity, timing of the peak and duration of the grass pollen seasons. For several sites, data are available for over twenty years enabling long term trends to be discerned. The analyses show notable contrasts in the progression of the seasons annually with differing lag times occurring between southern and northern sites in various years depending on the weather conditions. The patterns identified provide some insight into geographical differences and temporal trends in the incidence of pollinosis. The paper discusses the main difficulties involved in this type of analysis and notes possibilities for using data from the European Pollen Information service to construct pan European predictive models for pollen seasons.
Resumo:
In epidemiological studies, outdoor exposure to pollen is typically estimated using rooftop monitoring station data, whilst exposure overwhelmingly occurs at street level. In this study the relationship between street level and roof level grass pollen concentrations was investigated for city centre street canyon environments in Aarhus, Denmark, and London, UK, during the grass pollen seasons of 2010 and 2011 respectively. For the period mid-day to late evening, street level concentrations in both cities tended to be lower than roof-level concentrations, though this difference was found to be statistically significant only in London. The ratio of street/roof level concentrations was compared with temperature, relative humidity, wind speed and direction, and solar radiation. Results indicated that the concentration ratio responds to wind direction with respect to relative canyon orientation and local source distribution. In the London study, an increase in relative humidity was linked to a significant decrease in street/roof level concentration ratio, and a possible causative mechanism involving moisture mediated pollen grain buoyancy is proposed. Relationships with the other weather variables were not found to be significant in either location. These results suggest a tendency for monitoring station data to overestimate exposure in the canyon environment.
Resumo:
Background Very few studies on human exposure to allergenic pollen have been conducted using direct methods, with background concentrations measured at city center monitoring stations typically taken as a proxy for exposure despite the inhomogeneous nature of atmospheric pollen concentrations. A 2003 World Health Organization report highlighted the need for an improved understanding of the relation between monitoring station data and actual exposure. Objective To investigate the relation between grass pollen dose and background concentrations measured at a monitoring station, to assess the fidelity of monitoring station data as a qualitative proxy for dose, and to evaluate the ratio of dose rate to background concentration. Methods Grass pollen dose data were collected in Aarhus, Denmark, in an area where grass pollen sources were prevalent, using Nasal Air Samplers. Sample collection lasted for approximately 25 to 30 minutes and was performed at 2-hour intervals from noon to midevening under moderate exercise by 2 individuals. Results A median ratio of dose rate to background concentration of 0.018 was recorded, with higher ratio values frequently occurring at 12 to 2 pm, the time of day when grass species likely to be present in the area are expected to flower. From 4 to 8 pm, dose rate and background concentration data were found to be strongly and significantly correlated (rs = 0.81). Averaged dose rate and background concentration data showed opposing temporal trends. Conclusion Where local emissions are not a factor, background concentration data constitute a good quantitative proxy for inhaled dose. The present ratio of dose rate to background concentration may aid the study of dose–response relations.
Resumo:
Detailed surveys of depth and velocity are undertaken to describe hydro-ecological status of rivers. Fieldwork for these surveys is time consuming and expensive. This paper aims to describe the methodology applied in order to determine the most suitable depth sampling strategy for effective field data collection and river representation in time and space at the Leigh Brook river site, Worcester, UK. The accuracy of three different sampling strategies for predicting depth at non-measured points has been compared and the mesohabitats that better characterise depth changes due to variations in discharge have been identified. The results show that depth changes due to discharge change are mainly located at shallow and deep glide mesohabitat types. The analysis for the comparison of sampling strategies indicates that grid sampling strategies give better results than regular transects. Since the results also show that higher errors in predictions are obtained in the deepest areas, higher sampling densities should be applied in these locations.