7 resultados para Birch, Robert, 1808-1842.
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n=60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.
Resumo:
Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grain and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l/min at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800l/min with a Chemvol high-volume cascade impactor equipped with stages PM>10μm, 10 μm>PM>2.5μm, and in Germany also 2.5 μm>PM>0.12μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcεR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen lmptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM>10μm fraction at all stations. Bet v 1 isoforms pattern did not varied substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different isoforms, its fingerprint is constant across Europe. Bet v 1 was also exclusively linked to pollen. Pollen from different days varied >10-fold in allergen release. Thus exposure to allergen is inaccurately monitored by only monitoring birch pollen grains. Indeed, a humanized basophil activation test correlated much better with allergen concentrations in ambient air than with pollen count. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessment.
Resumo:
In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.
Resumo:
Here we review some of the most important aspects of recent work on Ragweed (Ambrosia) and birch (Betula) concerning: 1) sources, 2) trends & phenology and 3) dispersion and transformation. Sources: At Northern latitudes the birch fraction in forests usually exceeds 50% of all broadleaved trees and the abundance of birch decreases with latitude from 5%-20% in many mid-latitude regions and down to 0%-2% in more southern areas. Birches are also commonly found in small woodlands or planted as ornamental trees in urban areas. Ragweeds are herbaceous weed species that are associated with areas of disturbance. Ragweed is native to North America, but considered an invasive species in Europe, Australia and China. In Europe, the four main centres are: The Pannonian Plain, Ukraine, The Po Valley (Italy) and the Rhone Valley (France). Trends & Phenology: Birch pollen seasons have started earlier during the last decades. This trend appears have decreased during recent years despite increasing spring temperatures. Ragweed tends to experience less change in flowering date as ragweed flowering depends on photoperiod. Ragweed is increasing its distribution in Europe, but airborne concentrations of ragweed pollen are not universally increasing, e.g. due to control measures or pest attacks. Dispersion & transformation: The beginning of the birch pollen season is often heralded by episodes of Long Distance Transport (LDT) from the south. Similar LDT episodes are intermittently seen for ragweed, which can reach as far north as Scandinavia. Humidity and air pollution can modify pollen grains during atmospheric transport. This can cause a change in allergenic potential of the pollen grain and is a direction for future research including the effect of co-exposure of air pollution and the transformation of aeroallergens.
Resumo:
We have analysed the pollen seasons in Worcester for the period 2005–12 for alder (Alnus), birch (Betula) and oak (Quercus) by using back trajectory calculations and produced the first detailed source maps for these three pollen types. The study shows considerable variations in the source–receptor relationship of three of the most important tree pollen types in England with respect to allergy. Long Distance Transport is observed for Quercus and Betula but not for Alnus. The new source maps show a number of high emitting areas for Betula and Quercus, mainly near London, in the Midlands and in Wales. The production of source maps is sensitive to the used type of land cover data and how well they incorporate small woodlands. Two satellite products, Corine Land Cover and Globcover, are compared with the detailed national land cover product Land Cover Map 2007. The broad scale satellite products show either up to 50% less woody coverage or a direct misplacement of woodlands. The Lagrangian back trajectory model, the pollen count observations and the source maps altogether suggest that small woodlands (below 25 ha) play a major role in the overall pollen load in urban areas in England.