1 resultado para Biomass determination (Smith et al., 1983)
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Pollen grains from the genus ragweed (Ambrosia spp.) are important aeroallergens. In Europe, the largest sources of atmospheric ragweed pollen are the Rhône Valley (France), parts of Northern Italy, the Pannonian Plain and Ukraine. Episodes of Long Distance Transport (LDT) of ragweed pollen from these centres can cover large parts of Europe and are predominantly studied using receptor based models (Smith et al., (2013) and references therein). The clinical impact of allergenic ragweed pollen arriving from distant sources remains unclear (Cecchi et al. 2010). Although a recent study has found the major allergens of ragweed in air samples collected in Poznań, Poland, during episodes of long-distance transport from the Pannonian Plain (Grewling et al. 2013). The source orientated models SILAM, DEHM, COSMO-Art, METRAS and ENVIRO-HIRLAM currently report having the capability of modelling atmospheric concentrations of pollen in Europe. The performance of such source-orientated models is strongly dependent on the quality of the emissions data, which is a focus of current research (e.g. Thibaudon et al. (2014)). The output from these models are important for warning allergy sufferers in areas polluted by ragweed, but could also be used to warn the public of ragweed pollen being transported into areas where the plant is not abundant. Areas outside of the main areas of ragweed infection that contain considerable local populations must, however, also include local scale models. These models can be used to predict local concentrations, even when LDT is not present. This concept of combined LDT and local scale calculations has been shown to be work for air pollutants and is considered usable for urban scale calculations of aeroallergens once urban scale maps of aeroallergen sources have been produced.