6 resultados para Basilicata, southern Italy
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Spatial and temporal variations in daily grass pollen counts and weather variables are described for two regions with different bio-geographical and climatic regimes, southern Spain and the United Kingdom. Daily average grass pollen counts are considered from six pollen-monitoring sites, three in southern Spain (Ciudad Real, Córdoba and Priego) and three in the United Kingdom (Edinburgh, Worcester and Cambridge). Analysis shows that rainfall and maximum temperatures are important factors controlling the magnitude of the grass pollen season in both southern Spain and the United Kingdom, and that the strength and direction of the influence exerted by these variables varies with geographical location and time.
Resumo:
Geographical and temporal variations in the start dates of grass pollen seasons are described for selected sites of the European Pollen Information Service. Daily average grass pollen counts are derived from Network sites in Finland, the Netherlands, Denmark, United Kingdom, Austria, Italy and Spain, giving a broad longitudinal transect over Western Europe. The study is part of a larger project that also examines annual and regional variations in the severity, timing of the peak and duration of the grass pollen seasons. For several sites, data are available for over twenty years enabling long term trends to be discerned. The analyses show notable contrasts in the progression of the seasons annually with differing lag times occurring between southern and northern sites in various years depending on the weather conditions. The patterns identified provide some insight into geographical differences and temporal trends in the incidence of pollinosis. The paper discusses the main difficulties involved in this type of analysis and notes possibilities for using data from the European Pollen Information service to construct pan European predictive models for pollen seasons.
Resumo:
Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n=60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.
Resumo:
Here we review some of the most important aspects of recent work on Ragweed (Ambrosia) and birch (Betula) concerning: 1) sources, 2) trends & phenology and 3) dispersion and transformation. Sources: At Northern latitudes the birch fraction in forests usually exceeds 50% of all broadleaved trees and the abundance of birch decreases with latitude from 5%-20% in many mid-latitude regions and down to 0%-2% in more southern areas. Birches are also commonly found in small woodlands or planted as ornamental trees in urban areas. Ragweeds are herbaceous weed species that are associated with areas of disturbance. Ragweed is native to North America, but considered an invasive species in Europe, Australia and China. In Europe, the four main centres are: The Pannonian Plain, Ukraine, The Po Valley (Italy) and the Rhone Valley (France). Trends & Phenology: Birch pollen seasons have started earlier during the last decades. This trend appears have decreased during recent years despite increasing spring temperatures. Ragweed tends to experience less change in flowering date as ragweed flowering depends on photoperiod. Ragweed is increasing its distribution in Europe, but airborne concentrations of ragweed pollen are not universally increasing, e.g. due to control measures or pest attacks. Dispersion & transformation: The beginning of the birch pollen season is often heralded by episodes of Long Distance Transport (LDT) from the south. Similar LDT episodes are intermittently seen for ragweed, which can reach as far north as Scandinavia. Humidity and air pollution can modify pollen grains during atmospheric transport. This can cause a change in allergenic potential of the pollen grain and is a direction for future research including the effect of co-exposure of air pollution and the transformation of aeroallergens.
Resumo:
Airborne pollen transport at micro-, meso-gamma and meso-beta scales must be studied by atmospheric models, having special relevance in complex terrain. In these cases, the accuracy of these models is mainly determined by the spatial resolution of the underlying meteorological dataset. This work examines how meteorological datasets determine the results obtained from atmospheric transport models used to describe pollen transport in the atmosphere. We investigate the effect of the spatial resolution when computing backward trajectories with the HYSPLIT model. We have used meteorological datasets from the WRF model with 27, 9 and 3 km resolutions and from the GDAS files with 1 ° resolution. This work allows characterizing atmospheric transport of Olea pollen in a region with complex flows. The results show that the complex terrain affects the trajectories and this effect varies with the different meteorological datasets. Overall, the change from GDAS to WRF-ARW inputs improves the analyses with the HYSPLIT model, thereby increasing the understanding the pollen episode. The results indicate that a spatial resolution of at least 9 km is needed to simulate atmospheric flows that are considerable affected by the relief of the landscape. The results suggest that the appropriate meteorological files should be considered when atmospheric models are used to characterize the atmospheric transport of pollen on micro-, meso-gamma and meso-beta scales. Furthermore, at these scales, the results are believed to be generally applicable for related areas such as the description of atmospheric transport of radionuclides or in the definition of nuclear-radioactivity emergency preparedness.