5 resultados para Assembling (Electronic computers)
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Markerless systems are becoming more ubiquitous due to their increased use in video games consoles. Cheap cameras and software suites are making motion capture technologies more freely available to the digitally inclined choreographer. In this workshop we will demonstrate the opportunities and limitations provided by easily accessible and relatively inexpensive markerless motion capture systems. In particular we will explore the capacity of these systems to provide useful data in a live performance scenario where the latency, size and format of the captured data is crucial in allowing real-time processing and visualisation of the captured scene
Resumo:
In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain-expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labelled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel Genetic Programming based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation, and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation, and has significantly outperformed, or achieved a comparable performance to, the baseline methods.
Resumo:
Coupled map lattices (CML) can describe many relaxation and optimization algorithms currently used in image processing. We recently introduced the ‘‘plastic‐CML’’ as a paradigm to extract (segment) objects in an image. Here, the image is applied by a set of forces to a metal sheet which is allowed to undergo plastic deformation parallel to the applied forces. In this paper we present an analysis of our ‘‘plastic‐CML’’ in one and two dimensions, deriving the nature and stability of its stationary solutions. We also detail how to use the CML in image processing, how to set the system parameters and present examples of it at work. We conclude that the plastic‐CML is able to segment images with large amounts of noise and large dynamic range of pixel values, and is suitable for a very large scale integration(VLSI) implementation.