4 resultados para Air exposure
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Pollen is routinely monitored, but it is unknown whether pollen counts represent allergen exposure. We therefore simultaneously determined olive pollen and Ole e 1 in ambient air in C"ordoba, Spain, and "Evora, Portugal, using Hirst-type traps for pollen and high-volume cascade impactors for allergen. Pollen from different days released 12-fold different amounts of Ole e 1 per pollen (both locations P < 0.001). Average allergen release from pollen (pollen potency) was much higher in C"ordoba (3.9 pg Ole e 1/pollen) than in "Evora (0.8 pg Ole e 1/pollen, P = 0.004). Indeed, yearly olive pollen counts in C"ordoba were 2.4 times higher than in "Evora, but Ole e 1 concentrations were 7.6 times higher. When modeling the origin of the pollen, >40% of Ole e 1 exposure in "Evora was explained by high-potency pollen originating from the south of Spain. Thus, olive pollen can vary substantially in allergen release, even though they are morphologically identical.
Resumo:
Background Very few studies on human exposure to allergenic pollen have been conducted using direct methods, with background concentrations measured at city center monitoring stations typically taken as a proxy for exposure despite the inhomogeneous nature of atmospheric pollen concentrations. A 2003 World Health Organization report highlighted the need for an improved understanding of the relation between monitoring station data and actual exposure. Objective To investigate the relation between grass pollen dose and background concentrations measured at a monitoring station, to assess the fidelity of monitoring station data as a qualitative proxy for dose, and to evaluate the ratio of dose rate to background concentration. Methods Grass pollen dose data were collected in Aarhus, Denmark, in an area where grass pollen sources were prevalent, using Nasal Air Samplers. Sample collection lasted for approximately 25 to 30 minutes and was performed at 2-hour intervals from noon to midevening under moderate exercise by 2 individuals. Results A median ratio of dose rate to background concentration of 0.018 was recorded, with higher ratio values frequently occurring at 12 to 2 pm, the time of day when grass species likely to be present in the area are expected to flower. From 4 to 8 pm, dose rate and background concentration data were found to be strongly and significantly correlated (rs = 0.81). Averaged dose rate and background concentration data showed opposing temporal trends. Conclusion Where local emissions are not a factor, background concentration data constitute a good quantitative proxy for inhaled dose. The present ratio of dose rate to background concentration may aid the study of dose–response relations.
Resumo:
Background. Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. Objective. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. Methods. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. Results. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. Conclusions. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.
Resumo:
Future changes in population exposures to ambient air pollution are inherently linked with long-term trends in outdoor air quality, but also with changes in the building stock. Moreover, the burden of disease is further driven by the ageing of the European populations. This study aims to assess the impact of changes in climate, emissions, building stocks and population on air pollution related human health impacts across Europe in the future. Therefore an integrated assessment model combining atmospheric models and health impacts has been setup for projections of the future developments in air pollution related premature mortality. The focus is here on the regional scale impacts of exposure to surface ozone (O3), Secondary Inorganic Aerosols (SIA) and primary particulate matter (PPM).