45 resultados para Matt A. Casado


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this paper are to ascertain the main factors involved in the phenological mechanism of alder flowering in Central Europe by understanding the in - fluence of the main meteorological parameters, the North Atlantic Oscillation (NAO) effect and the study of the Chill and Heat requirements to overcome dormancy. Airborne pollen (1995–2007) was collected in Pozna (Poland) by means a volumetric spore trap. Temperatures for February, and January and February averages of the NAO are generally key factors affecting the timing of the alder pollen seasons. Chilling accumulation (which started in Pozna at the beginning of November, while the end took place during the month of January) of 985 CH with a threshold temperature of -0.25ºC, followed by 118 GDDºC with a threshold temperature of 0.5ºC, were necessary to overcome dormancy and produce the onset of flowering. The calculated dormancy requirements, mean tem - peratures of the four decades of the year, and January and February average NAO index recorded during the period before flowering, were used to construct linear and multiple regression models in order to forecast the start date of the alder pollen seasons Its ac - curacy was tested using data from 2007, and the difference between the predicted and observed dates ranged from 3–7 days

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardised approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardised assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large-scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here a simple methodology for calculating species inventories for allergenic pollen that can be used by atmospheric transport models. Ragweed (Ambrosia) species distribution or infection level on the Pannonian Plain has been used as an example of how the methodology can be used. The Pannonian Plain is one of the three main regions in Europe recognized as being polluted by Ambrosia. The methodology relies on spatial variations in annual Ambrosia pollen counts, knowledge on ragweed ecology and detailed land cover information. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were witnessed around Kecskemét in central Hungary and Novi Sad in northern Serbia. These areas are also the areas with the highest density of Ambrosia habitats. The resulting inventory can be entered into atmospheric transport models in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the movement of ragweed pollen from the Pannonian Plain. The methodology is likely to be generally applicable for creating inventories of species distribution of allergenic plants. The main requirement is availability of: detailed land cover information; pollen indexes; a list of the most important habitats; and a region of interest that is mainly influenced by local sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that ragweed pollen arrives in Poland from sources in the south, in Slovakia, the Czech Republic, Hungary and Austria. It is likely that ragweed pollen also arrives from sources in the southeast (e.g. Ukraine). This hypothesis is investigated using 13-years of pollen data and back-trajectory analysis. Ambrosia pollen data were collected at three sites in Poland, Rzeszów, Kraków and Pozna. The amount of ragweed pollen recorded at Rzeszów was significantly higher than in Pozna and Kraków. This can be related to either a higher abundance of local populations of Ambrosia in south-east Poland or the nearness of Rzeszów to foreign sources of ragweed pollen. The combined results of pollen measurements and air mass trajectory calculations identified plumes of Ambrosia pollen that were recorded at Rzeszów, Kraków and Pozna on the 4th and 5th September 1999 and the 3rd September 2002. These plumes arrived at the pollen-monitoring sites from an easterly direction indicating sources of Ambrosia pollen in eastern Poland or Ukraine. This identifies Ukraine as a possible new source of ragweed pollen for Poland and therefore an important source area of Ambrosia pollen on the European Continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen data have been recorded at Novi Sad in Serbia since 2000. The adopted method of producing pollen counts has been the use of five longitudinal transects that examine 19.64% of total sample surface. However, counting five transects is time consuming and so the main objective of this study is to investigate whether reducing the number to three or even two transects would have a significant effect on daily average and bi-hourly pollen concentrations, as well as the main characteristics of the pollen season and long-term trends. This study has shown that there is a loss of accuracy in daily average and bi-hourly pollen concentrations (an increase in % ERROR) as the sub-sampling area is reduced from five to three or two longitudinal transects. However, this loss of accuracy does not impact on the main characteristics of the season or long-term trends. As a result, this study can be used to justify changing the sub-sampling method used at Novi Sad from five to three longitudinal transects. The use of two longitudinal transects has been ruled out because, although quicker, the counts produced: (a) had the greatest amount of % ERROR, (b) altered the amount of influence of the independent variable on the dependent variable (the slope in regression analysis) and (c) the total sampled surface (7.86%) was less than the minimum requirement recommended by the European Aerobiology Society working group on Quality Control (at least 10% of total slide area).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grain and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l/min at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800l/min with a Chemvol high-volume cascade impactor equipped with stages PM>10μm, 10 μm>PM>2.5μm, and in Germany also 2.5 μm>PM>0.12μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcεR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen lmptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM>10μm fraction at all stations. Bet v 1 isoforms pattern did not varied substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different isoforms, its fingerprint is constant across Europe. Bet v 1 was also exclusively linked to pollen. Pollen from different days varied >10-fold in allergen release. Thus exposure to allergen is inaccurately monitored by only monitoring birch pollen grains. Indeed, a humanized basophil activation test correlated much better with allergen concentrations in ambient air than with pollen count. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen is routinely monitored, but it is unknown whether pollen counts represent allergen exposure. We therefore simultaneously determined olive pollen and Ole e 1 in ambient air in C"ordoba, Spain, and "Evora, Portugal, using Hirst-type traps for pollen and high-volume cascade impactors for allergen. Pollen from different days released 12-fold different amounts of Ole e 1 per pollen (both locations P < 0.001). Average allergen release from pollen (pollen potency) was much higher in C"ordoba (3.9 pg Ole e 1/pollen) than in "Evora (0.8 pg Ole e 1/pollen, P = 0.004). Indeed, yearly olive pollen counts in C"ordoba were 2.4 times higher than in "Evora, but Ole e 1 concentrations were 7.6 times higher. When modeling the origin of the pollen, >40% of Ole e 1 exposure in "Evora was explained by high-potency pollen originating from the south of Spain. Thus, olive pollen can vary substantially in allergen release, even though they are morphologically identical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pollen grains of ragweed are important aeroallergens that have the potential to be transported longdistances through the air. The arrival of ragweed pollen in Nordic countries from the Pannonian Plain canoccur when certain conditions are met, which this study aims to describe for the first time. Atmosphericragweed pollen concentrations were collected at 16 pollen-monitoring sites. Other factors included inthe analysis were the overall synoptic weather situation, surface wind speeds, wind direction and tem-peratures as well as examining regional scale orography and satellite observations. Hot and dry weatherin source areas on the Pannonian Plain aid the release of ragweed pollen during the flowering seasonand result in the deep Planetary Boundary Layers needed to lift the pollen over the Carpathian Moun-tains to the north. Suitable synoptic conditions are also required for the pollen bearing air masses tomove northward. These same conditions produce the jet-effect Kosava and orographic foehn winds thataid the release and dispersal of ragweed pollen and contribute towards its movement into Poland andbeyond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In epidemiological studies, outdoor exposure to pollen is typically estimated using rooftop monitoring station data, whilst exposure overwhelmingly occurs at street level. In this study the relationship between street level and roof level grass pollen concentrations was investigated for city centre street canyon environments in Aarhus, Denmark, and London, UK, during the grass pollen seasons of 2010 and 2011 respectively. For the period mid-day to late evening, street level concentrations in both cities tended to be lower than roof-level concentrations, though this difference was found to be statistically significant only in London. The ratio of street/roof level concentrations was compared with temperature, relative humidity, wind speed and direction, and solar radiation. Results indicated that the concentration ratio responds to wind direction with respect to relative canyon orientation and local source distribution. In the London study, an increase in relative humidity was linked to a significant decrease in street/roof level concentration ratio, and a possible causative mechanism involving moisture mediated pollen grain buoyancy is proposed. Relationships with the other weather variables were not found to be significant in either location. These results suggest a tendency for monitoring station data to overestimate exposure in the canyon environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Common or short ragweed (Ambrosia artemisiifolia L.) is an annual herb belonging to the Asteraceae family that was described by Carl Linnaeus in the 18th century. It is a noxious invasive species that is an important weed in agriculture and a source of highly allergenic pollen. The importance placed on A. artemisiifolia is reflected by the number of international projects that have now been launched by the European Commission and the increasing number of publications being produced on this topic. This review paper examines existing knowledge about ragweed ecology, distribution and flowering phenology and the environmental health risk that this noxious plant poses in Europe. The paper also examines control measures used in the fight against it and state of the art methods for modelling atmospheric concentrations of this important aeroallergen. Common ragweed is an environmental health threat, not only in its native North America but also in many parts of the world where it has been introduced. In Europe, where the plant has now become naturalised and frequently forms part of the flora, the threat posed by ragweed has been identified and steps are being taken to reduce further geographical expansion and limit increases in population densities of the plant in order to protect the allergic population. This is particularly important when one considers possible range shifts, changes in flowering phenology and increases in the amount of pollen and allergenic potency that could be brought about by changes in climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

France, in particular the Rhône-Alpes region, is one of the three main centres of ragweed (Ambrosia) in Europe. The aim of this study is to develop a gridded ragweed pollen source inventory for all of France that can be used in assessments, eradication plans and by atmospheric models for describing concentrations of airborne ragweed pollen. The inventory combines information about spatial variations in annual Ambrosia pollen counts, knowledge of ragweed ecology, detailed land cover information and a Digital Elevation Model. The ragweed inventory consists of a local infection level on a scale of 0–100% (where 100% is the highest plant abundance per area in the studied region) and a European infection level between 0% and 100% (where 100% relates to the highest identified plant abundance in Europe using the same methodology) that has been distributed onto the EMEP grid with 5 km × 5 km resolution. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were recorded at Roussillon in the Rhône-Valley. This is reflected by the inventory, where the European infection level has been estimated to reach 67.70% of the most infected areas in Europe i.e. Kecskemét in central Hungary. The inventory shows that the Rhône Valley is the most heavily infected part of France. Central France is also infected, but northern and western parts of France are much less infected. The inventory can be entered into atmospheric transport models, in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the dispersion of ragweed pollen within France as well as potential long-distance transport from France to other European countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Very few studies on human exposure to allergenic pollen have been conducted using direct methods, with background concentrations measured at city center monitoring stations typically taken as a proxy for exposure despite the inhomogeneous nature of atmospheric pollen concentrations. A 2003 World Health Organization report highlighted the need for an improved understanding of the relation between monitoring station data and actual exposure. Objective To investigate the relation between grass pollen dose and background concentrations measured at a monitoring station, to assess the fidelity of monitoring station data as a qualitative proxy for dose, and to evaluate the ratio of dose rate to background concentration. Methods Grass pollen dose data were collected in Aarhus, Denmark, in an area where grass pollen sources were prevalent, using Nasal Air Samplers. Sample collection lasted for approximately 25 to 30 minutes and was performed at 2-hour intervals from noon to midevening under moderate exercise by 2 individuals. Results A median ratio of dose rate to background concentration of 0.018 was recorded, with higher ratio values frequently occurring at 12 to 2 pm, the time of day when grass species likely to be present in the area are expected to flower. From 4 to 8 pm, dose rate and background concentration data were found to be strongly and significantly correlated (rs = 0.81). Averaged dose rate and background concentration data showed opposing temporal trends. Conclusion Where local emissions are not a factor, background concentration data constitute a good quantitative proxy for inhaled dose. The present ratio of dose rate to background concentration may aid the study of dose–response relations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: In aerobiological studies it is often necessary to compare concentration data recorded with different models of sampling instrument. Sampler efficiency typically varies from device to device, and depends on the target aerosol and local atmospheric conditions. To account for these differences inter-sampler correction factors may be applied, however for many pollen samplers and pollen taxa such correction factors do not exist and cannot be derived from existing published work. Materials and methods: In this study the relative efficiencies of the Burkard 7-Day Recording Volumetric Spore Trap, the Sampling Technologies Rotorod Model 20 and the Burkard Personal Volumetric Air Sampler were evaluated for Urticaceae and Poaceae pollen under field conditions, and the influence of wind speed and relative humidity on these efficiency relationships was assessed. Data for the two pollen taxa were collected during 2010 and 2011-12 respectively. Results: The three devices were found to record significantly different concentrations for both pollen taxa, with the exception of the 7-Day and Rotorod samplers for Poaceae pollen. Under the range of conditions present during the study wind speed was found to only have a significant impact on inter-sampler relationships involving the vertically orientated Burkard Personal sampler, whilst no interaction between relative efficiency and relative humidity was observed. Conclusions: Data collected with the three models of sampler should only be compared once the appropriate correction has been made, with wind speed taken into account where appropriate.