19 resultados para Pollen analysis
Resumo:
The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995–2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using backtrajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.
Resumo:
Trajectory analysis is a valuable tool that has been used before in aerobiological studies, to investigate the movement of airborne pollen. This study has employed back-trajectories to examine the four highest grass pollen episodes at Worcester, during the 2001 grass pollen season. The results have shown that the highest grass pollen counts of the 2001 season were reached when air masses arrived from a westerly direction. Back-trajectory analysis has a limited value to forecasters because the method is retrospective and cannot be employed directly for forecasting. However, when used in conjunction with meteorological data this technique can be used to examine high magnitude events in order to identify conditions that lead to high pollen counts.
Resumo:
Geographical and temporal variations in the start dates of grass pollen seasons are described for selected sites of the European Pollen Information Service. Daily average grass pollen counts are derived from Network sites in Finland, the Netherlands, Denmark, United Kingdom, Austria, Italy and Spain, giving a broad longitudinal transect over Western Europe. The study is part of a larger project that also examines annual and regional variations in the severity, timing of the peak and duration of the grass pollen seasons. For several sites, data are available for over twenty years enabling long term trends to be discerned. The analyses show notable contrasts in the progression of the seasons annually with differing lag times occurring between southern and northern sites in various years depending on the weather conditions. The patterns identified provide some insight into geographical differences and temporal trends in the incidence of pollinosis. The paper discusses the main difficulties involved in this type of analysis and notes possibilities for using data from the European Pollen Information service to construct pan European predictive models for pollen seasons.
Resumo:
Airborne concentrations of Poaceae pollen have been monitored in Poznań for more than ten years and the length of the dataset is now considered sufficient for statistical analysis. The objective of this paper is to produce long-range forecasts that predict certain characteristics of the grass pollen season (such as the start, peak and end dates of the grass pollen season) as well as short-term forecasts that predict daily variations in grass pollen counts for the next day or next few days throughout the main grass pollen season. The method of forecasting was regression analysis. Correlation analysis was used to examine the relationship between grass pollen counts and the factors that affect its production, release and dispersal. The models were constructed with data from 1994-2004 and tested on data from 2005 and 2006. The forecast models predicted the start of the grass pollen season to within 2 days and achieved 61% and 70% accuracy on a scale of 1-4 when forecasting variations in daily grass pollen counts in 2005 and 2006 respectively. This study has emphasised how important the weather during the few weeks or months preceding pollination is to grass pollen production, and draws attention to the importance of considering large-scale patterns of climate variability (indices of the North Atlantic Oscillation) when constructing forecast models for allergenic pollen.
Resumo:
Background: The pollen grains of Ambrosia spp. are considered to be important aeroallergens. Previous studies have shown that the long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains from sources to the south, e.g. the Czech Republic, Slovakia and Hungary. In this study, Ambrosia pollen counts and back-trajectories from specific episodes in 1999 and 2002 have been analysed with the aim of identifying possible new sources of Ambrosia pollen arriving at three sites in Poland. Method: The combination of Ambrosia pollen measurements (daily average and bi-hourly concentrations) and air mass trajectory calculations were used to investigate two Ambrosia pollen episodes recorded at Rzeszow, Krakow and Poznań on the 4th and 5th September 1999 and 3rd September 2002. Ambrosia pollen counts were recorded by volumetric spore traps of the Hirst design. Trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Results: The collective results of pollen measurements and back-trajectory analysis indicate plumes of Ambrosia pollen travelling up through Poland from the southeast during the investigated episodes. In 1999, the plume was first recorded at Rzeszow in Southeastern Poland during the morning of the 4th September. Its route can be followed as it passed Krakow during the afternoon of the 4th, and later on the 4th and 5th September at Poznań. Similarly, back-trajectories calculated during the morning and afternoon from Krakow and Rzeszow on the 3rd September 2002 indicates that the air masses arrived at these sites from the East or Southeast. Conclusion: This study shows the progress of Ambrosia plumes into Poland from the southeast. Ambrosia pollen release occurs mainly during the day and so a midday peak in Ambrosia pollen concentrations may indicate a local source. However, if the plume of Ambrosia pollen tracked along its northwesterly path over Poland during investigated episodes did not originate from inside Poland, then it is likely that it came from the Ukraine. This identifies a possible new source of ragweed pollen for Poland. Trajectory analysis can only show the path along which an air mass travels, not the specific source area. Further investigation could therefore include source based transport models such as 3D Eulerian atmospheric transport models.
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
Previous work on Betula spp. (birch) in the UK and at five sites in Europe has shown that pollen seasons for this taxon have tended to become earlier by about 5–10 days per decade in most regions investigated over the last 30 years. This pattern has been linked to the trend to warmer winters and springs in recent years. However, little work has been done to investigate the changes in the pollen seasons for the early flowering trees. Several of these, such as Alnus spp. and Corylus spp., have allergens, which cross-react with those of Betula spp., and so have a priming effect on allergic people. This paper investigates pollen seasons for Alnus spp. and Corylus spp. for the years 1996–2005 at Worcester, in the West Midlands, United Kingdom. Pollen data for daily average counts were collected using a Burkard volumetric trap sited on the exposed roof of a three-storey building. The climate is western maritime. Meteorological data for daily temperatures (maximum and minimum) and rainfall were obtained from the local monitoring sites. The local area up to approximately 10 km surrounding the site is mostly level terrain with some undulating hills and valleys. The local vegetation is mixed farmland and deciduous woodland. The pollen seasons for the two taxa investigated are typically late December or early January to late March. Various ways of defining the start and end of the pollen seasons were considered for these taxa, but the most useful was the 1% method whereby the season is deemed to have started when 1% of the total catch is achieved and to have ended when 99% is reached. The cumulative catches (in grains/m3) for Alnus spp. varied from 698 (2001) to 3,467 (2004). For Corylus spp., they varied from 65 (2001) to 4,933 (2004). The start dates for Alnus spp. showed 39 days difference in the 10 years (earliest 2000 day 21, latest 1996 day 60). The end dates differed by 26 days and the length of season differed by 15 days. The last 4 years in the set had notably higher cumulative counts than the first 2, but there was no trend towards earlier starts. For Corylus spp. start days also differed by 39 days (earliest 1999 day 5, latest 1996 day 44). The end date differed by 35 days and length of season by 26 days. Cumulative counts and lengths of season showed a distinct pattern of alternative high (long) and low (short) years. There is some evidence of a synchronous pattern for Alnus spp.. These patterns show some significant correlations with temperature and rainfall through the autumn, winter and early spring, and some relationships with growth degree 4s and chill units, but the series is too short to discern trends. The analysis has provided insight to the variation in the seasons for these early flowering trees and will form a basis for future work on building predictive models for these taxa.
Resumo:
A number of media outlets now issue medium-range (~7 day) weather forecasts on a regular basis. It is therefore logical that aerobiologists should attempt to produce medium-range forecasts for allergenic pollen that cover the same time period as the weather forecasts. The objective of this study is to construct a medium-range (< 7 day) forecast model for grass pollen at north London. The forecast models were produced using regression analysis based on grass pollen and meteorological data from 1990-1999 and tested on data from 2000 and 2002. The modelling process was improved by dividing the grass pollen season into three periods; the pre-peak, peak and post peak periods of grass pollen release. The forecast consisted of five regression models. Two simple linear regression models predicting the start and end date of the peak period, and three multiple regression models forecasting daily average grass pollen counts in the pre-peak, peak and post-peak periods. Overall the forecast models achieved 62% accuracy in 2000 and 47% in 2002, reflecting the fact that the 2002 grass pollen season was of a higher magnitude than any of the other seasons included in the analysis. This study has the potential to make a notable contribution to the field of aerobiology. Winter averages of the North Atlantic Oscillation were used to predict certain characteristics of the grass pollen season, which presents an important advance in aerobiological work. The ability to predict allergenic pollen counts for a period between five and seven days will benefit allergy sufferers. Furthermore, medium-range forecasts for allergenic pollen will be of assistance to the medical profession, including allergists planning treatment and physicians scheduling clinical trials.
Resumo:
Spatial and temporal variations in daily grass pollen counts and weather variables are described for two regions with different bio-geographical and climatic regimes, southern Spain and the United Kingdom. Daily average grass pollen counts are considered from six pollen-monitoring sites, three in southern Spain (Ciudad Real, Córdoba and Priego) and three in the United Kingdom (Edinburgh, Worcester and Cambridge). Analysis shows that rainfall and maximum temperatures are important factors controlling the magnitude of the grass pollen season in both southern Spain and the United Kingdom, and that the strength and direction of the influence exerted by these variables varies with geographical location and time.
Resumo:
Two of the most frequently used methods of pollen counting on slides from Hirst type traps are evaluated in this paper: the transverse traverse method and the longitudinal traverse method. The study was carried out during June–July 1996 and 1997 on slides from a trap at Worcester, UK. Three pollen types were selected for this purpose: Poaceae, Urticaceae and Quercus. The statistical results show that the daily concentrations followed similar trends (p < 0.01, R-values between 0.78–0.96) with both methods during the two years, although the counts were slightly higher using the longitudinal traverses method. Significant differences were observed, however, when the distribution of the concentrations during 24 hour sampling periods was considered. For more detailed analysis, the daily counts obtained with both methods were correlated with the total number of pollen grains for the taxon over the whole slide, in two different situations: high and low concentrations of pollen in the atmosphere. In the case of high concentrations, the counts for all three taxa with both methods are significantly correlated with the total pollen count. In the samples with low concentrations, the Poaceae and Urticaceae counts with both methods are significantly correlated with the total counts, but none of Quercus counts are. Consideration of the results indicates that both methods give a reasonable approximation to the count derived from the slide as a whole. More studies need be done to explore the comparability of counting methods in order to work towards a Universal Methodology in Aeropalynology.
Resumo:
Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n=60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.
Resumo:
This study aims to find likely sources of Ambrosia pollen recorded during 2007 at five pollen-monitoring sites in central Europe, Novi Sad, Ruma, Negotin and Nis (Serbia) and Skopje (Macedonia). Ambrosia plants start flowering early in the morning and so Ambrosia pollen grains recorded during the day are likely to be from a local source. Conversely, Ambrosia pollen grains recorded at night or very early in the morning may have arrived via long-range transport. Ambrosia pollen counts were analysed in an attempt to find possible sources of the pollen and to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. Diurnal variations and the magnitude of Ambrosia pollen counts during the 2007 Ambrosia pollen season showed that Novi Sad and Ruma (Pannonian Plain) and to a lesser degree Negotin (Balkans) were located near to sources of Ambrosia pollen. Mean bi-hourly Ambrosia pollen concentrations peaked during the middle of the day and concentrations at these sites were notably higher than at Nis and Skopje. Three episodes were selected for further analysis using back-trajectory analysis. Back-trajectories showed that air masses brought Ambrosia pollen from the north to Nis and, on one occasion, to Skopje (Balkans) during the night and early morning after passing to the east of Novi Sad and Ruma during the previous day. The results of this study identified the Southern part of the Pannonian Plain around Novi Sad and Ruma as being a potential source region for Ambrosia pollen recorded at Nis and Skopje in the Balkans.
Resumo:
We present here a simple methodology for calculating species inventories for allergenic pollen that can be used by atmospheric transport models. Ragweed (Ambrosia) species distribution or infection level on the Pannonian Plain has been used as an example of how the methodology can be used. The Pannonian Plain is one of the three main regions in Europe recognized as being polluted by Ambrosia. The methodology relies on spatial variations in annual Ambrosia pollen counts, knowledge on ragweed ecology and detailed land cover information. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were witnessed around Kecskemét in central Hungary and Novi Sad in northern Serbia. These areas are also the areas with the highest density of Ambrosia habitats. The resulting inventory can be entered into atmospheric transport models in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the movement of ragweed pollen from the Pannonian Plain. The methodology is likely to be generally applicable for creating inventories of species distribution of allergenic plants. The main requirement is availability of: detailed land cover information; pollen indexes; a list of the most important habitats; and a region of interest that is mainly influenced by local sources.
Resumo:
Previous studies have shown that ragweed pollen arrives in Poland from sources in the south, in Slovakia, the Czech Republic, Hungary and Austria. It is likely that ragweed pollen also arrives from sources in the southeast (e.g. Ukraine). This hypothesis is investigated using 13-years of pollen data and back-trajectory analysis. Ambrosia pollen data were collected at three sites in Poland, Rzeszów, Kraków and Poznań. The amount of ragweed pollen recorded at Rzeszów was significantly higher than in Poznań and Kraków. This can be related to either a higher abundance of local populations of Ambrosia in south-east Poland or the nearness of Rzeszów to foreign sources of ragweed pollen. The combined results of pollen measurements and air mass trajectory calculations identified plumes of Ambrosia pollen that were recorded at Rzeszów, Kraków and Poznań on the 4th and 5th September 1999 and the 3rd September 2002. These plumes arrived at the pollen-monitoring sites from an easterly direction indicating sources of Ambrosia pollen in eastern Poland or Ukraine. This identifies Ukraine as a possible new source of ragweed pollen for Poland and therefore an important source area of Ambrosia pollen on the European Continent.
Resumo:
Pollen data have been recorded at Novi Sad in Serbia since 2000. The adopted method of producing pollen counts has been the use of five longitudinal transects that examine 19.64% of total sample surface. However, counting five transects is time consuming and so the main objective of this study is to investigate whether reducing the number to three or even two transects would have a significant effect on daily average and bi-hourly pollen concentrations, as well as the main characteristics of the pollen season and long-term trends. This study has shown that there is a loss of accuracy in daily average and bi-hourly pollen concentrations (an increase in % ERROR) as the sub-sampling area is reduced from five to three or two longitudinal transects. However, this loss of accuracy does not impact on the main characteristics of the season or long-term trends. As a result, this study can be used to justify changing the sub-sampling method used at Novi Sad from five to three longitudinal transects. The use of two longitudinal transects has been ruled out because, although quicker, the counts produced: (a) had the greatest amount of % ERROR, (b) altered the amount of influence of the independent variable on the dependent variable (the slope in regression analysis) and (c) the total sampled surface (7.86%) was less than the minimum requirement recommended by the European Aerobiology Society working group on Quality Control (at least 10% of total slide area).