3 resultados para wet peroxide oxidation

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide is a substrate or side-product in many enzyme-catalyzed reactions. For example, it is a side-product of oxidases, resulting from the re-oxidation of FAD with molecular oxygen, and it is a substrate for peroxidases and other enzymes. However, hydrogen peroxide is able to chemically modify the peptide core of the enzymes it interacts with, and also to produce the oxidation of some cofactors and prostetic groups (e.g., the hemo group). Thus, the development of strategies that may permit to increase the stability of enzymes in the presence of this deleterious reagent is an interesting target. This enhancement in enzyme stability has been attempted following almost all available strategies: site-directed mutagenesis (eliminating the most reactive moieties), medium engineering (using stabilizers), immobilization and chemical modification (trying to generate hydrophobic environments surrounding the enzyme, to confer higher rigidity to the protein or to generate oxidation-resistant groups), or the use of systems capable of decomposing hydrogen peroxide under very mild conditions. If hydrogen peroxide is just a side-product, its immediate removal has been reported to be the best solution. In some cases, when hydrogen peroxide is the substrate and its decomposition is not a sensible solution, researchers coupled one enzyme generating hydrogen peroxide “in situ” to the target enzyme resulting in a continuous supply of this reagent at low concentrations thus preventing enzyme inactivation. This review will focus on the general role of hydrogen peroxide in biocatalysis, the main mechanisms of enzyme inactivation produced by this reactive and the different strategies used to prevent enzyme inactivation caused by this “dangerous liaison”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present oxygen-nonstoichiometric transition metal oxides as highly prominent candidates to catalyze the industrially important oxidation reactions of hydrocarbons when hydrogen peroxide is employed as an environmentally benign oxidant. The proof-of-concept data are revealed for the complex cobalt oxide, YBaCo4O7+δ (0 < δ < 1.5), in the oxidation process of cyclohexene. In the 2-h reaction experiments YBaCo4O7+δ was found to be significantly more active (>60 % conversion) than the commercial TiO2 catalyst (<20 %) even though its surface area was less than one tenth of that of TiO2. In the 7-h experiments with YBaCo4O7+δ, 100 % conversion of cyclohexene was achieved. Immersion calorimetry measurements showed that the high catalytic activity may be ascribed to the exceptional ability of YBaCo4O7+δ to dissociate H2O2 and release active oxygen to the oxidation reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we demonstrate the efficiency of some dimeric [Ln4(H2O)6(β-GeW10O38)2]12− anions composed of lanthanide-stabilised dilacunary Keggin tungstogermanate fragments (ββ-Ln4, Ln = Dy, Ho, Er, Tm) as heterogeneous catalysts for the organic phase oxidation of aniline with hydrogen peroxide. The results obtained evidence total conversion of aniline at room temperature, as well as full selectivity towards nitrosobenzene, and the catalysts are able to retain both their activity and selectivity after several runs. Peroxopolyoxometalate intermediaries have been identified as the catalytically active species during the aniline-to-nitrosobenzene oxidation process.