3 resultados para wavelength tunable
em Universidad de Alicante
Resumo:
We study a single-electron transistor (SET) based upon a II–VI semiconductor quantum dot doped with a single-Mn ion. We present evidence that this system behaves like a quantum nanomagnet whose total spin and magnetic anisotropy depend dramatically both on the number of carriers and their orbital nature. Thereby, the magnetic properties of the nanomagnet can be controlled electrically. Conversely, the electrical properties of this SET depend on the quantum state of the Mn spin, giving rise to spin-dependent charging energies and hysteresis in the Coulomb blockade oscillations of the linear conductance.
Resumo:
A high percentage of hydrocarbon (HC) emissions from gasoline vehicles occur during the cold-start period. Among the alternatives proposed to reduce these HC emissions, the use of zeolites before the three-way catalyst (TWC) is thought to be very effective. Zeolites are the preferred adsorbents for this application; however, to avoid high pressure drops, supported zeolites are needed. In this work, two coating methods (dip-coating and in situ crystallization) are optimized to prepare BETA zeolite thin films supported on honeycomb monoliths with tunable properties. The important effect of the density of the thin film in the final performance as a HC trap is demonstrated. A highly effective HC trap is prepared showing 100 % toluene retention, accomplishing the desired performance as a HC trap, desorbing propene at temperatures close to 300 °C, and remaining stable after cycling. The use of this material before the TWC is very promising, and works towards achieving the sustainability and environmental protection goals.
Resumo:
This study describes a novel spectral LED-based tunable light source used for customized lighting solutions, especially for the reconstruction of CIE (Commission Internationale de l’Éclairage) standard illuminants. The light source comprises 31 spectral bands ranging from 400 to 700 nm, an integrating cube and a control board with a 16-bit resolution. A minimization algorithm to calculate the weighting values for each channel was applied to reproduce illuminants with precision. The differences in spectral fitting and colorimetric parameters showed that the reconstructed spectra were comparable to the standard, especially for the D65, D50, A and E illuminants. Accurate results were also obtained for illuminants with narrow peaks such as fluorescents (F2 and F11) and a high-pressure sodium lamp (HP1). In conclusion, the developed spectral LED-based light source and the minimization algorithm are able to reproduce any CIE standard illuminants with a high spectral and colorimetric accuracy able to advance available custom lighting systems useful in the industry and other fields such as museum lighting.