6 resultados para waste decomposition

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanical treatments such as shredding or extrusion are applied to municipal solid wastes (MSW) to produce refuse-derived fuels (RDF). In this way, a waste fraction (mainly composed by food waste) is removed and the quality of the fuel is improved. In this research, simultaneous thermal analysis (STA) was used to investigate how different mechanical treatments applied to MSW influence the composition and combustion behaviour of fuel blends produced by combining MSW or RDF with wood in different ratios. Shredding and screening resulted in a more efficient mechanical treatment than extrusion to reduce the chlorine content in a fuel, which would improve its quality. This study revealed that when plastics and food waste are combined in the fuel matrix, the thermal decomposition of the fuels are accelerated. The combination of MSW or RDF and woody materials in a fuel blend has a positive impact on its decomposition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pyrolysis of a sludge produced in the waste water treatment plant of an oil refinery was studied in a pilot plant reactor provided with a system for condensation of semivolatile matter. The study comprises experiments at 350, 400, 470 and 530 °C in nitrogen atmosphere. Analysis of all the products obtained (gases, liquids and chars) are presented, with a thermogravimetric study of the char produced and analysis of main components of the liquid. In the temperature range studied, the composition of the gas fraction does not appreciably vary. In the liquids, the light hidrocarbon yield increases with increasing temperature, whereas the aromatic compounds diminish. The decomposition of the solid fraction has been analysed, finding a material that reacts rapidly with oxygen regardless of the conditions it is formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinyl chloride (PVC) is one of the plastics most extensively used due to its versatility. The demand of PVC resin in Europe during 2012 reached 5000 ktonnes1. PVC waste management is a big problem because of the high volume generated all over the world and its chlorine content. End-of-life PVC is mainly mixed with municipal solid waste (MSW) and one common disposal option for this is waste-to-energy incineration (WtE). The presence of plastics such as PVC in the fuel mix increases the heating value of the fuel. PVC has two times higher energy content than MSW ‒around 20 MJ/kg vs 10 MJ/kg, respectively. However, the high chlorine content in PVC resin, 57 wt.%, may be a source for the formation of hazardous chlorinated organic pollutants in thermal processes. Chlorine present in the feedstock of WtE plants plays an important role in the formation of (i) chlorine (Cl2) and (ii) hydrochloric gas (HCl), both of them responsible for corrosion, and (iii) chlorinated organic pollutants2. In this work, pyrolytic and oxidative thermal degradation of PVC resin were carried out in a laboratory scale reactor at 500 ºC in order to analyze the influence of the reaction atmosphere on the emissions evolved. Special emphasis was put on the analysis of chlorinated organic pollutants such as polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs) and other related compounds like polychlorobenzenes (PCBzs), polychlorophenols (PCPhs) and polycyclic aromatic hydrocarbons (PAHs). Another objective of this work was to compare the results with those of a previous work3 in which emissions at different temperatures in both pyrolysis and combustion of another PVC resin had been studied; in that case, experiments for PCDD/Fs emissions had been performed only at 850 ºC.