7 resultados para user-controlled cloud computing
em Universidad de Alicante
Resumo:
The development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous capabilities whose response times are difficult to predict. The research described in this work aims to respond to this issue by developing a computational model that formalizes the problem and that defines adjusting computing methods. The described proposal combines imprecise computing strategies with cloud computing paradigms in order to provide flexible implementation frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in running contexts with heterogeneous work loading for checking the validity of the proposed model is described.
Resumo:
Cloud Agile Manufacturing is a new paradigm proposed in this article. The main objective of Cloud Agile Manufacturing is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.
Resumo:
This paper proposes a new manufacturing paradigm, we call Cloud Agile Manufacturing, and whose principal objective is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge — or at least without having to be experts — in managing the required resources. The proposal takes advantage of many of the benefits that can offer technologies and models like: Business Process Management (BPM), Cloud Computing, Service Oriented Architectures (SOA) and Ontologies. To develop the proposal has been taken as a starting point the Semantic Industrial Machinery as a Service (SIMaaS) proposed in previous work. This proposal facilitates the effective integration of industrial machinery in a computing environment, offering it as a network service. The work also includes an analysis of the benefits and disadvantages of the proposal.
Resumo:
El nuevo paradigma de computación en la nube posibilita la prestación de servicios por terceros. Entre ellos, se encuentra el de las bases de datos como servicio (DaaS) que permite externalizar la gestión y alojamiento del sistema de gestión de base de datos. Si bien esto puede resultar muy beneficioso (reducción de costes, gestión simplificada, etc.), plantea algunas dificultades respecto a la funcionalidad, el rendimiento y, en especial, la seguridad de dichos servicios. En este trabajo se describen algunas de las propuestas de seguridad en sistemas DaaS existentes y se realiza un análisis de sus características principales, introduciendo un nuevo enfoque basado en tecnologías no exclusivamente relacionales (NoSQL) que presenta ventajas respecto a la escalabilidad y el rendimiento.
Resumo:
Comunicación presentada en las V Jornadas de Computación Empotrada, Valladolid, 17-19 Septiembre 2014
Open business intelligence: on the importance of data quality awareness in user-friendly data mining
Resumo:
Citizens demand more and more data for making decisions in their daily life. Therefore, mechanisms that allow citizens to understand and analyze linked open data (LOD) in a user-friendly manner are highly required. To this aim, the concept of Open Business Intelligence (OpenBI) is introduced in this position paper. OpenBI facilitates non-expert users to (i) analyze and visualize LOD, thus generating actionable information by means of reporting, OLAP analysis, dashboards or data mining; and to (ii) share the new acquired information as LOD to be reused by anyone. One of the most challenging issues of OpenBI is related to data mining, since non-experts (as citizens) need guidance during preprocessing and application of mining algorithms due to the complexity of the mining process and the low quality of the data sources. This is even worst when dealing with LOD, not only because of the different kind of links among data, but also because of its high dimensionality. As a consequence, in this position paper we advocate that data mining for OpenBI requires data quality-aware mechanisms for guiding non-expert users in obtaining and sharing the most reliable knowledge from the available LOD.
Resumo:
The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.