4 resultados para university-industry linkages
em Universidad de Alicante
Resumo:
This paper analyses the consequences of urban environmental degradation on the well-being of Spanish miners. It is based on analyses of differences in mortality and height. The first part of the paper examines new hypotheses regarding the urban penalty. We take into consideration existing works in economic theory that address market failures when analysing the higher urban death rate. We explain the reduction in height using the model recently created by Floud, Fogel, Harris and Hong for British cities. The second part of the paper presents information demonstrating that the urban areas in the two largest mining areas in Spain (Bilbao and the Cartagena-La Unión mountain range) experienced a higher death rate relative to rural areas as a consequence of market failures derived from what we term an ‘anarchic urbanisation’.
Resumo:
The construction industry has long been considered as highly fragmented and non-collaborative industry. This fragmentation sprouted from complex and unstructured traditional coordination processes and information exchanges amongst all parties involved in a construction project. This nature coupled with risk and uncertainty has pushed clients and their supply chain to search for new ways of improving their business process to deliver better quality and high performing product. This research will closely investigate the need to implement a Digital Nervous System (DNS), analogous to a biological nervous system, on the flow and management of digital information across the project lifecycle. This will be through direct examination of the key processes and information produced in a construction project and how a DNS can provide a well-integrated flow of digital information throughout the project lifecycle. This research will also investigate how a DNS can create a tight digital feedback loop that enables the organisation to sense, react and adapt to changing project conditions. A Digital Nervous System is a digital infrastructure that provides a well-integrated flow of digital information to the right part of the organisation at the right time. It provides the organisation with the relevant and up-to-date information it needs, for critical project issues, to aid in near real-time decision-making. Previous literature review and survey questionnaires were used in this research to collect and analyse data about information management problems of the industry – e.g. disruption and discontinuity of digital information flow due to interoperability issues, disintegration/fragmentation of the adopted digital solutions and paper-based transactions. Results analysis revealed efficient and effective information management requires the creation and implementation of a DNS.
Resumo:
The construction industry is characterised by fragmentation and suffers from lack of collaboration, often adopting adversarial working practices to achieve deliverables. For the UK Government and construction industry, BIM is a game changer aiming to rectify this fragmentation and promote collaboration. However it has become clear that there is an essential need to have better controls and definitions of both data deliverables and data classification. Traditional methods and techniques for collating and inputting data have shown to be time consuming and provide little to improve or add value to the overall task of improving deliverables. Hence arose the need in the industry to develop a Digital Plan of Work (DPoW) toolkit that would aid the decision making process, providing the required control over the project workflows and data deliverables, and enabling better collaboration through transparency of need and delivery. The specification for the existing Digital Plan of Work (DPoW) was to be, an industry standard method of describing geometric, requirements and data deliveries at key stages of the project cycle, with the addition of a structured and standardised information classification system. However surveys and interviews conducted within this research indicate that the current DPoW resembles a digitised version of the pre-existing plans of work and does not push towards the data enriched decision-making abilities that advancements in technology now offer. A Digital Framework is not simply the digitisation of current or historic standard methods and procedures, it is a new intelligent driven digital system that uses new tools, processes, procedures and work flows to eradicate waste and increase efficiency. In addition to reporting on conducted surveys above, this research paper will present a theoretical investigation into usage of Intelligent Decision Support Systems within a digital plan of work framework. Furthermore this paper will present findings on the suitability to utilise advancements in intelligent decision-making system frameworks and Artificial Intelligence for a UK BIM Framework. This should form the foundations of decision-making for projects implemented at BIM level 2. The gap identified in this paper is that the current digital toolkit does not incorporate the intelligent characteristics available in other industries through advancements in technology and collation of vast amounts of data that a digital plan of work framework could have access to and begin to develop, learn and adapt for decision-making through the live interaction of project stakeholders.
Resumo:
PAS1192-2 (2013) outlines the “fundamental principles of Level 2 information modeling”, one of these principles is the use of what is commonly referred to as a Common Data Environment (CDE). A CDE could be described as an internet-enabled cloudhosting platform, accessible to all construction team members to access shared project information. For the construction sector to achieve increased productivity goals, the next generation of industry professionals will need to be educated in a way that provides them with an appreciation of Building Information Modelling (BIM) working methods, at all levels, including an understanding of how data in a CDE should be structured, managed, shared and published. This presents a challenge for educational institutions in terms of providing a CDE that addresses the requirements set out in PAS1192-2, and mirrors organisational and professional working practices without causing confusion due to over complexity. This paper presents the findings of a two-year study undertaken at Ulster University comparing the use of a leading industry CDE platform with one derived from the in-house Virtual Learning Environment (VLE), for the delivery of a student BIM project. The research methodology employed was a qualitative case study analysis, focusing on observations from the academics involved and feedback from students. The results of the study show advantages for both CDE platforms depending on the learning outcomes required.