3 resultados para uniform storng consistency
em Universidad de Alicante
Resumo:
We discuss the influence of a uniform current j⃗ on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ε(q⃗) has a current-induced contribution proportional to q⃗⋅J→, where J→ is the spin current, and predict that collective dynamics will be more strongly damped at finite j⃗. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109A cm-2. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.
Resumo:
The thermodynamic consistency of almost 90 VLE data series, including isothermal and isobaric conditions for systems of both total and partial miscibility in the liquid phase, has been examined by means of the area and point-to-point tests. In addition, the Gibbs energy of mixing function calculated from these experimental data has been inspected, with some rather surprising results: certain data sets exhibiting high dispersion or leading to Gibbs energy of mixing curves inconsistent with the total or partial miscibility of the liquid phase, surprisingly, pass the tests. Several possible inconsistencies in the tests themselves or in their application are discussed. Related to this is a very interesting and ambitious initiative that arose within the NIST organization: the development of an algorithm to assess the quality of experimental VLE data. The present paper questions the applicability of two of the five tests that are combined in the algorithm. It further shows that the deviation of the experimental VLE data from the correlation obtained by a given model, the basis of some point-to-point tests, should not be used to evaluate the quality of these data.
Resumo:
Thermodynamics Conference 2013 (Statistical Mechanics and Thermodynamics Group of the Royal Society of Chemistry), The University of Manchester, 3-6 September 2013.