11 resultados para town hall
em Universidad de Alicante
Resumo:
This communication develops the process of interventions of the Renaissance fortress of a new plant built in 1554–57 in Santa Pola. It is one of the earliest examples built with reference to military architecture theoretical treaties (XV–XVI) and best preserved. The study runs its own story from its initial military use, through the use of civil equipment until the final cultural and Museum Center. First, the project of Italian origin is examined and its use as barracks for troops for a duration of three centuries (1557–1850), pointing out the architectural constants of war machinery in a defense position and its origin as a rainwater collector and cistern: a perfect square with two bastions in which a plan of the uprising is preserved (1778). Secondly, we study the changes in the mentioned architecture throughout a century and a half (1850–1990) after its change of ownership (from the state to the municipality), and as a result of the new use as a city hall and public endowment: a market and health and leisure centre, which meant the demolition of defensive elements and the opening up to the outside of the inner parade ground. And thirdly, the new transfer of the municipal offices brings in the beginning of a project of transformations (1990–2015) that retrieves the demolished elements at the same time as it assigns the entire fort for a cultural centre: exhibition, research and history museum, promoting the identity between the citizens and the building which stands in the foundations of their city. The conclusions take us through an interesting route that goes from the approach of defensive tactics, its use as administrative headquarters to the current cultural policy of preservation. In addition, all the known plans of the fort are recovered (of military, civil and cultural use), some unpublished, as well as the project of the North wing that has guided the last operation and which has been set as a pattern of reference.
Resumo:
We present a mechanism for persistent charge current. Quantum spin Hall insulators hold dissipationless spin currents in their edges so that, for a given spin orientation, a net charge current flows which is exactly compensated by the counterflow of the opposite spin. Here we show that ferromagnetic order in the edge upgrades the spin currents into persistent charge currents without applied fields. For that matter, we study the Hubbard model including Haldane-Kane-Mele spin-orbit coupling in a zigzag ribbon and consider the case of graphene. We find three electronic phases with magnetic edges that carry currents reaching 0.4 nA, comparable to persistent currents in metallic rings, for the small spin-orbit coupling in graphene. One of the phases is a valley half metal.
Resumo:
Two-dimensional insulators with time-reversal symmetry can have two topologically different phases, the quantum spin Hall and the normal phase. The former is revealed by the existence of conducting edge states that are topologically protected. Here we show that the reaction to impurity, in bulk, is radically different in the two phases and can be used as a marker for the topological phase. Within the context of the Kane-Mele model for graphene, we find that strictly normalizable in-gap impurity states only occur in the quantum spin Hall phase and carry a dissipationless current whose chirality is determined by the spin and pseudospin of the residing electron.
Resumo:
Purpose – This study seeks to analyse the links between strategies, structures and processes in the case of the largest Spanish town halls, using the Miles and Snow's models about organisational strategies, and asking the following questions: “What is the situation of municipal services' outsourcing in the largest Spanish town halls?”; “Do Spanish town halls follow the strategies suggested in Miles and Snow's model?”; and “Is there a relationship between the strategic position adopted by town halls and their stance on outsourcing?”. Design/methodology/approach – In order to achieve these aims a questionnaire was administered to the human resource managers in the town halls of the largest Spanish cities. Findings – The paper finds that outsourcing is a complement, which seeks to improve the services delivered, and local institutions do not resort to it due to a lack of internal resources but as a way to complement their own capabilities. Originality/value – The paper has identified three distinct strategic profiles in the town halls interviewed which coincide with the profiles that Miles and Snow call prospective, defensive and reactive strategies. It reveals that town halls which outsource to a greater extent are the ones which identify more with the prospective or reactive strategy, whereas those which outsource less are closer to the defensive strategy.
Resumo:
Over the past decade, the numerical modeling of the magnetic field evolution in astrophysical scenarios has become an increasingly important field. In the crystallized crust of neutron stars the evolution of the magnetic field is governed by the Hall induction equation. In this equation the relative contribution of the two terms (Hall term and Ohmic dissipation) varies depending on the local conditions of temperature and magnetic field strength. This results in the transition from the purely parabolic character of the equations to the hyperbolic regime as the magnetic Reynolds number increases, which presents severe numerical problems. Up to now, most attempts to study this problem were based on spectral methods, but they failed in representing the transition to large magnetic Reynolds numbers. We present a new code based on upwind finite differences techniques that can handle situations with arbitrary low magnetic diffusivity and it is suitable for studying the formation of sharp current sheets during the evolution. The code is thoroughly tested in different limits and used to illustrate the evolution of the crustal magnetic field in a neutron star in some representative cases. Our code, coupled to cooling codes, can be used to perform long-term simulations of the magneto-thermal evolution of neutron stars.
Resumo:
We model the quantum Hall effect in heterostructures made of two gapped graphene stripes with different gaps, Δ1 and Δ2. We consider two main situations, Δ1=0,Δ2≠0, and Δ1=−Δ2. They are different in a fundamental aspect: only the latter features kink states that, when intervalley coupling is absent, are protected against backscattering. We compute the two-terminal conductance of heterostructures with channel length up to 430 nm, in two transport configurations, parallel and perpendicular to the interface. By studying the effect of disorder on the transport along the boundary, we quantify the robustness of kink states with respect to backscattering. Transport perpendicular to the boundary shows how interface states open a backscattering channel for the conducting edge states, spoiling the perfect conductance quantization featured by the homogeneously gapped graphene Hall bars. Our results can be relevant for the study of graphene deposited on hexagonal boron-nitride, as well as to model graphene with an interaction-driven gapped phase with two equivalent phases separated by a domain wall.
Resumo:
This paper provides an analysis of the relationships existing between citizen participation and satisfaction levels within the framework of Spanish local administrations, additionally paying attention to the links between organisational size and the said participation and satisfaction levels. The results of a survey questionnaire answered by 388 Human Resources (HR) managers from the largest Spanish Town Halls were examined for these purposes. A claim is made both to increase the degree of citizen participation in public decision-making and to ensure the delivery of efficient and effective public services that can really meet citizens’ needs in Spanish town Halls.
Resumo:
The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-orbit coupling and we calculate the Z2 topological invariant of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous multilayers we find that even when the spin-orbit interaction opens a gap for all possible stackings, only those with an odd number of layers host gapless edge states while those with an even number of layers are trivial insulators. For heterostructures where graphene is encapsulated by trivial insulators, it turns out that interlayer coupling is able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials, indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.
Resumo:
Skyrmions are topologically protected spin textures, characterized by a topological winding number N, that occur spontaneously in some magnetic materials. Recent experiments have demonstrated the capability to grow graphene on top Fe/Ir, a system that exhibits a two-dimensional skyrmion lattice. Here we show that a weak exchange coupling between the Dirac electrons in graphene and a two-dimensional skyrmion lattice withN = ±1 drives graphene into a quantum anomalous Hall phase, with a band gap in bulk, a Chern number C = 2N, and chiral edge states with perfect quantization of conductance G = 2N e2 h . Our findings imply that the topological properties of the skyrmion lattice can be imprinted in the Dirac electrons of graphene.
Resumo:
Both spin and orbital degrees of freedom contribute to the magnetic moment of isolated atoms. However, when inserted in crystals, atomic orbital moments are quenched because of the lack of rotational symmetry that protects them when isolated. Thus, the dominant contribution to the magnetization of magnetic materials comes from electronic spin. Here we show that nanoislands of quantum spin Hall insulators can host robust orbital edge magnetism whenever their highest occupied Kramers doublet is singly occupied, upgrading the spin edge current into a charge current. The resulting orbital magnetization scales linearly with size, outweighing the spin contribution for islands of a few nm in size. This linear scaling is specific of the Dirac edge states and very different from Schrodinger electrons in quantum rings. By modeling Bi(111) flakes, whose edge states have been recently observed, we show that orbital magnetization is robust with respect to disorder, thermal agitation, shape of the island, and crystallographic direction of the edges, reflecting its topological protection.
Resumo:
Application of a perpendicular magnetic field to charge neutral graphene is expected to result in a variety of broken symmetry phases, including antiferromagnetic, canted, and ferromagnetic. All these phases open a gap in bulk but have very different edge states and noncollinear spin order, recently confirmed experimentally. Here we provide an integrated description of both edge and bulk for the various magnetic phases of graphene Hall bars making use of a noncollinear mean field Hubbard model. Our calculations show that, at the edges, the three types of magnetic order are either enhanced (zigzag) or suppressed (armchair). Interestingly, we find that preformed local moments in zigzag edges interact with the quantum spin Hall like edge states of the ferromagnetic phase and can induce backscattering.