6 resultados para topology optimisation
em Universidad de Alicante
Resumo:
Comunicación presentada en el 2nd International Workshop on Pattern Recognition in Information Systems, Alicante, April, 2002.
Resumo:
Three HPLC methods were optimised for the determination of citric acid, succinic acid and ascorbic acid using a photodiode array detector and fructose, glucose and sucrose using a refractive index in twenty eight citrus juices. The analysis was completed in <16 min. Two different harvests were taken into account for this study. For the season 2011, ascorbic acid content was comprised between 19.4 and 59 mg vitamin C/100 mL; meanwhile for the season 2012, the content was slightly higher for most of the samples ranging from 33.5 to 85.3 mg vitamin C/100 mL. Moreover, the citric acid content in orange juices ranged between 9.7 and 15.1 g L−1, while for clementines the content was clearly lower (i.e. from 3.5 to 8.4 g L−1). However, clementines showed the highest sucrose content with values near to 6 g/100 mL. Finally, a cluster analysis was applied to establish a classification of the citrus species.
Resumo:
This reply to Gash’s (Found Sci 2013) commentary on Nescolarde-Selva and Usó-Doménech (Found Sci 2013) answers the three questions raised and at the same time opens up new questions.
Resumo:
Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labelled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.
Resumo:
In many classification problems, it is necessary to consider the specific location of an n-dimensional space from which features have been calculated. For example, considering the location of features extracted from specific areas of a two-dimensional space, as an image, could improve the understanding of a scene for a video surveillance system. In the same way, the same features extracted from different locations could mean different actions for a 3D HCI system. In this paper, we present a self-organizing feature map able to preserve the topology of locations of an n-dimensional space in which the vector of features have been extracted. The main contribution is to implicitly preserving the topology of the original space because considering the locations of the extracted features and their topology could ease the solution to certain problems. Specifically, the paper proposes the n-dimensional constrained self-organizing map preserving the input topology (nD-SOM-PINT). Features in adjacent areas of the n-dimensional space, used to extract the feature vectors, are explicitly in adjacent areas of the nD-SOM-PINT constraining the neural network structure and learning. As a study case, the neural network has been instantiate to represent and classify features as trajectories extracted from a sequence of images into a high level of semantic understanding. Experiments have been thoroughly carried out using the CAVIAR datasets (Corridor, Frontal and Inria) taken into account the global behaviour of an individual in order to validate the ability to preserve the topology of the two-dimensional space to obtain high-performance classification for trajectory classification in contrast of non-considering the location of features. Moreover, a brief example has been included to focus on validate the nD-SOM-PINT proposal in other domain than the individual trajectory. Results confirm the high accuracy of the nD-SOM-PINT outperforming previous methods aimed to classify the same datasets.
Resumo:
We have studied the role played by cyclic topology on charge-transfer properties of recently synthesized π -conjugated molecules, namely the set of [n]cycloparaphenylene compounds, with n the number of phenylene rings forming the curved nanoring. We estimate the charge-transfer rates for holes and electrons migration within the array of molecules in their crystalline state. The theoretical calculations suggest that increasing the size of the system would help to obtain higher hole and electron charge-transfer rates and that these materials might show an ambipolar behavior in real samples, independently of the different mode of packing followed by the [6]cycloparaphenylene and [12]cycloparaphenylene cases studied.