3 resultados para three-dimensional model of an organisation
em Universidad de Alicante
Resumo:
In this work the usefulness of qualitatively studying and drawing three-dimensional temperature–composition diagrams for ternary systems is pointed out to understand and interpret the particular behavior of the liquid–vapour equilibrium of non-ideal ternary systems. Several examples have been used in order to highlight the interest and the possibilities of this tool, which should be an interesting support not only for lecturers, but also for researchers interested in experimental equilibrium data determination.
Resumo:
Los modelos geológico-geotécnicos permiten al ingeniero comprender mejor las condiciones reinantes en un determinado lugar, además de identificar los principales problemas geotécnicos y hacer más realista la estimación de propiedades del suelo. En este trabajo se presenta la metodología empleada para el diseño de un modelo geológico-geotécnico tridimensional de la Vega Baja del Río Segura que consta de cuatro zonas caracterizadas por sus propiedades geotécnicas y su problemática asociada. El modelo resulta fundamentalmente de gran utilidad para la planificación de investigaciones preliminares de obras civiles.
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.