8 resultados para threatened species management
em Universidad de Alicante
Resumo:
Using information from two recently published atlases of threatened invertebrate species in peninsular Spain, we examined the climatic, land use and geographic characteristics of the 100 km2 UTM cells with most likelihood of suffering extinctions (extinction cells), as well as the attributes of the species prone to population extinctions. Extinction cells have had significantly (1) lower precipitation values, (2) higher temperatures, (3) higher percentages of anthropic land uses or (4) higher rates of anthropization during the last 20 years than the remaining cells. Nevertheless, probable extinctions may occur under a wide range of climatic and anthropization change rates and these variables can only explain a low proportion (~5 %) of variability in the occurrence or number of extinction cells. Aquatic species seem to suffer higher local extinction rates than terrestrial species. Interestingly, many invertebrate species with approximately 25 or less occurrence cells are on a clear trajectory towards extinction. These results outline the difficulties and uncertainties in relating probable population extinctions with climatic and land use changes in the case of invertebrate data. However, they also suggest that a third of the considered Spanish threatened species could have lost some of their populations, and that current conservation efforts are insufficient to reverse this tendency.
Resumo:
El gasterópodo marino Patella ferruginea se encuentra incluido en los Catálogos Español y Andaluz de Especies Amenazadas en la categoría “En peligro de extinción”. En 2008 fue aprobada la Estrategia de Conservación Nacional de la especie que establece la realización de un seguimiento de la población cada cuatro años. En Andalucía se ha realizado en 2010 el seguimiento de la especie empleando dos tipos de metodología: los “Controles de crecimiento”, mediante marcaje de ejemplares, y los “Censos exhaustivos” en “Tramos” de costa, para intentar detectar todos los individuos presentes. En el censo de 2010 se han muestreado unos 21 km de costa en 34 localidades, un 5% del litoral andaluz con presencia de la especie, lo que constituye un esfuerzo considerable, pero asumible para el control periódico de la misma. La densidad media detectada es muy baja, de 0,048 ind./m. El mayor número de individuos se encuentra en Cádiz y la población mejor estructurada en la isla de Alborán. Se estima que el tamaño actual de la población en Andalucía ronda los 1.800 ejemplares, lo que constituye un aumento con respecto a inventarios anteriores. Sin embargo, el contingente es muy reducido para garantizar la supervivencia de la especie. La categoría de protección propuesta por el Libro Rojo de los Invertebrados de Andalucía, “En peligro crítico” (MORENO y ARROYO, 2008), debe considerarse, por lo tanto, la más adecuada para la lapa ferruginosa siguiendo los criterios de valoración de la UICN (2001).
Resumo:
Se aporta la relación de especies de coleópteros y sírfidos saproxílicos que habitan en ecosistemas de dehesa del oeste ibérico. Se ha estudiado la Reserva Biológica de Campanarios de Azaba, provincia de Salamanca, designada en 2013 como primera Reserva Entomológica de España por la Asociación española de Entomología. Durante los 19 meses de muestreo se registraron 9.603 ejemplares de coleópteros saproxílicos pertenecientes a 157 especies (40 familias) y 477 ejemplares de sírfidos saproxílicos pertenecientes a 18 especies. Para la recolección del material se utilizaron trampas de emergencia y trampas de ventana. Entre los insectos capturados hay diez especies amenazadas, ya sea a nivel europeo o de España, que, a la vista de los resultados, mantienen poblaciones abundantes en este ecosistema de dehesa del oeste ibérico.
Resumo:
Results of the monitoring network of the Posidonia oceanica meadows in the Valencia region in Spain are analysed. For spatial comparison the whole data set has been analysed, however, for temporal trends we only selected stations that have been monitored at least 6 years in the period of 2002–2011 (26 stations in 13 localities). At the south of the studied area, meadows are larger, and they have higher density and covering than that in the Valencia Gulf, excluding Oropesa meadow. Monitoring of P. oceanica meadows in the Valencia region in Spain indicates that most of them are stationary or they are increasing their density and covering while no decline was observed in the studied meadows. These results indicate that there is not a general decline of P. oceanica meadows and that the decline of P. oceanica, when it has been observed in other studies, is produced by local causes that may be managed at the local level. This study also reflects the importance of long series of direct data to analyse trends in the population dynamics for slow-growing species.
Resumo:
Programa LIFE Comisión Europea (LIFE NAT 080064 CUBOMED; Ministerio de Agricultura, Alimentación y Medio Ambiente; Fundación Biodiversidad; Dirección General del Agua, Generalitat Valenciana; Fundació Baleària; El Portet de Denia.
Resumo:
Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a “demographic inverse problem” and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.
Resumo:
The knowledge of the distributional patterns of saproxylic beetles is essential for conservation biology due to the relevance of this fauna in the maintenance of ecological processes and the endangerment of species. The complex community of saproxylic beetles is shaped by different assemblages that are composed of species linked by the microhabitats they use. We evaluate how different the species distribution patterns that are obtained can be, depending on the analyzed assemblage and to what extent these can affect conservation decisions. Beetles were sampled using hollow emergence and window traps in three protected areas of the Iberian Peninsula. Species richness, composition, and diversity turnover were analyzed for each sampling method and showed high variation depending on the analyzed assemblage. Beta diversity was clearly higher among forests for the assemblage captured using window traps. This method collects flying insects from different tree microhabitats and its captures are influenced by the forest structuring. Within forests, the assemblages captured by hollow emergence traps, which collect the fauna linked to tree hollows, showed the largest turnover of species, as they are influenced by the characteristics of each cavity. Moreover, the selection of the forest showing the highest species richness strongly depended on the studied assemblage. This study demonstrates that differences in the studied assemblages (group of species co-occurring in the same habitat) can also lead to significant differences in the identified patterns of species distribution and diversity turnover. This fact will be necessary to take into consideration when making decisions about conservation and management.
Resumo:
Fish traps are widely used in Norwegian fjords, especially those designed for monitoring salmonid populations in the marine environment, although many other marine fish species are also captured. The composition and spatio-temporal variations of fish species captured by fish traps were monitored in five different coastal locations throughout the Romsdalsfjord region, Western Norway, from May to August during the three consecutive years (2011–2013). Twenty-three fish species were captured by traps in coastal waters, both resident and migratory fishes. The most common fish and with greater catchability were saithe (Pollachis virens) and sea trout (Salmo trutta), followed by cod (Gadus morhua), pollack (P. pollachius), herring (Clupea harengus) and mackerels (Trachurus trachurus and Scomber scombrus). However, the captured assemblage presented great spatial and seasonal variations, in terms of mean daily catch, probably associated with hydrographical conditions and migrational patterns. Information obtained in this study will help us to better understand the compositions and dynamic of coastal fish populations inhabiting Norwegian coastal waters. In addition, traps are highly recommended as a management tool for fish research (e.g. fish-tagging experiments, mark and recapture) and conservation purposes (coastal use and fisheries studies).