7 resultados para systems - evolution

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of the new textual genres such as blogs or forum entries is growing in parallel with the evolution of the Social Web. This paper presents two corpora of blog posts in English and in Spanish, annotated according to the EmotiBlog annotation scheme. Furthermore, we created 20 factual and opinionated questions for each language and also the Gold Standard for their answers in the corpus. The purpose of our work is to study the challenges involved in a mixed fact and opinion question answering setting by comparing the performance of two Question Answering (QA) systems as far as mixed opinion and factual setting is concerned. The first one is open domain, while the second one is opinion-oriented. We evaluate separately the two systems in both languages and propose possible solutions to improve QA systems that have to process mixed questions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sub-Numidian Tertiary stratigraphic record of the Tunisian Tell has been updated by means of 11 stratigraphic successions belonging to the Maghrebian Flysch Basin (N-African Margin) reconstructed in the Tunisian Numidian Zone and the Triassic Dome Zone. The Sub-Numidian successions studied range from the Paleocene to the Priabonian, representing a major change in the sedimentation from the latest Cretaceous onwards. The Sub-Numidian succession and the Numidian Formation are separated by an Intermediate interval located between two erosive surfaces (local paraconformities). The stratigraphic analysis has revealed diachronous contacts between distal slope to basinal sedimentary formation, allowing the identification of an Early Eocene Chouabine marker bed. The integrated biostratigraphic analysis made by means of planktonic foraminifera and calcareous nannoplankton updates the ages of the formations studied, proving younger than previously thought. The new definition of the Sub-Numidian stratigraphy enables a better correlation with equivalent successions widely outcropping along the Maghrebian, Betic, and southern Apennine Chains. The study proposes a new evolutionary tectonic/sedimentary model for this Tunisian sector of the Maghrebian Chain during the Paleogene after the Triassic–Cretaceous extensional regime. This paleogeographic reorganization is considered a consequence of the beginning of the tectonic inversion (from extensional to compressional), leading to the end of the preorogenic sedimentation. Our results suggest a non-tabular stratigraphy (marked by lateral changes of lithofacies, variable thicknesses, and the presence of diachronous boundaries) providing significant elements for a re-evaluation of active petroleum systems on the quality, volume, distribution, timing of oil generation, and on the migration and accumulation of the oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find that the formation of MWC 656 (the first Be binary containing a black hole) involves a common envelope phase and a supernova explosion. This result supports the idea that a rapidly rotating Be star can emerge out of a common envelope phase, which is very intriguing because this evolutionary stage is thought to be too fast to lead to significant accretion and spin up of the B star. We predict ∼10–100 of B-BH binaries to currently reside in the Galactic disc, among which around 1/3 contain a Be star, but there is only a small chance to observe a system with parameters resembling MWC 656. If MWC 656 is representative of intrinsic Galactic Be-BH binary population, it may indicate that standard evolutionary theory needs to be revised. This would pose another evolutionary problem in understanding black hole (BH) binaries, with BH X-ray novae formation issue being the prime example. Future evolution of MWC 656 with an ∼5 M⊙ BH and with an ∼13 M⊙ main-sequence companion on an ∼60 d orbit may lead to the formation of a coalescing BH–NS (neutron star) system. The estimated Advanced LIGO/Virgo detection rate of such systems is up to ∼0.2 yr−1. This empirical estimate is a lower limit as it is obtained with only one particular evolutionary scenario, the MWC 656 binary. This is only a third such estimate available (after Cyg X-1 and Cyg X-3), and it lends additional support to the existence of so far undetected BH–NS binaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Early Miocene Bisciaro Fm., a marly limestone succession cropping out widely in the Umbria–Romagna–Marche Apennines, is characterized by a high amount of volcaniclastic content, characterizing this unit as a peculiar event of the Adria Plate margin. Because of this volcaniclastic event, also recognizable in different sectors of the central-western Mediterranean chains, this formation is proposed as a “marker” for the geodynamic evolution of the area. In the Bisciaro Fm., the volcaniclastic supply starts with the “Raffaello” bed (Earliest Aquitanian) that marks the base of the formation and ends in the lower portion of the Schlier Fm. (Late Burdigalian–Langhian p.p.). Forty-one studied successions allowed the recognition of three main petrofacies: (1) Pyroclastic Deposits (volcanic materials more than 90 %) including the sub-petrofacies 1A, Vitroclastic/crystallo-vitroclastic tuffs; 1B, Bentonitic deposits; and 1C, Ocraceous and blackish layers; (2) Resedimented Syn-Eruptive Volcanogenic Deposits (volcanic material 30–90 %) including the sub-petrofacies 2A, High-density volcanogenic turbidites; 2B, Low-density volcanogenic turbidites; 2C, Crystal-rich volcanogenic deposits; and 2D, Glauconitic-rich volcaniclastites; (3) Mixing of Volcaniclastic Sediments with Marine Deposits (volcanic material 5–30 %, mixed with marine sediments: marls, calcareous marls, and marly limestones). Coeval volcaniclastic deposits recognizable in different tectonic units of the Apennines, Maghrebian, and Betic Chains show petrofacies and chemical–geochemical features related to a similar calc-alkaline magmatism. The characterization of this event led to the hypothesis of a co-genetic relationship between volcanic activity centres (primary volcanic systems) and depositional basins (depositional processes) in the Early Miocene palaeogeographic and palaeotectonic evolution of the central-western Mediterranean region. The results support the proposal of a geodynamic model of this area that considers previously proposed interpretations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El Estribo Volcanic Complex (EVC) is located in the northern part of the Michoacán–Guanajuato Volcanic Field within the Trans-Mexican Volcanic Belt (TMVB). El Estribo is located at the southern edge of the E-W Pátzcuaro fault that belongs to the Pátzcuaro-Jarácuaro graben, a western extension of the E-W Morelia–Acambay fault system. Stratigraphy, geochronology, chemistry, and mineral assemblages suggest that the volcanic complex was constructed in two periods separated by a ~ 100 ka volcanic hiatus: a) emission of lava flows that constructed a shield volcano between 126 ka, and b) mixed phreatomagmatic to Strombolian activity that formed a cinder cone ~ 28 ka. The magmas that fed these monogenetic volcanoes were able to use the same feeding system. The cinder cone itself was constructed by Strombolian fallouts and remobilized scoria beds, followed by an erosion period, and by a mixed phreatomagmatic to magmatic phase (Strombolian fallouts ending with lava flows). Soft-sedimentary deformation of beds and impact sags, cross-bedding, as well as pitting and hydrothermal cracks found in particles support the phreatomagmatic phase. The erupted magmas through time ejected basaltic andesitic lava flows (56.21–58.88% SiO2) that built the shield volcano and then basaltic andesitic scoria (57.65–59.05% SiO2) that constructed the cinder cone. Although they used the same feeding system, the geochemical data and the mineral chemistry of the magmas indicate that the shield volcano and the cinder cone were fed by different magma batches erupted thousands of years apart. Therefore, the location of El Estribo Volcanic Complex along an E-W fault that has generated two sector collapses of the shield volcano to the north may be directly linked to this complex redistribution of the magmatic paths to the surface. Our findings show that magmatic feeding systems within monogenetic volcanic fields could be long lived, questioning the classic view of the monogenetic nature of their volcanoes and yielding information about the potential volcanic risk of these settings, usually considered risk-free.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.