20 resultados para surface chemistry

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the electrochemical characterization of N-doped carbon xerogels in the form of microspheres and of carbon aerogels with varied porosities and surface oxygen complexes. The interfacial capacitance of N-doped carbon xerogels decreased with increased micropore surface area as determined by N2 adsorption at −196 °C. The interfacial capacitance showed a good correlation with the areal NXPS concentration, and the best correlation with the areal concentration of pyrrolic or pyridonic nitrogen functionalities. The gravimetric capacitance decreased with greater xerogel microsphere diameter. The interfacial capacitance of carbon aerogels increased with higher percentage of porosity as determined from particle and true densities. The interfacial capacitance showed a linear relationship with the areal oxygen concentration and with the areal concentrations of CO- and CO2-evolving groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH4+ species interacting with the Brønsted acid sites, together with the presence of NH3 species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One option to optimize carbon materials for supercapacitor applications is the generation of surface functional groups that contribute to the pseudocapacitance without losing the designed physical properties. This requires suitable functionalization techniques able to selectively introduce a given amount of electroactive oxygen groups. In this work, the influence of the chemical and electrochemical oxidation methods, on the chemical and physical properties of a zeolite templated carbon (ZTC), as a model carbon material, have been studied and compared. Although both oxidation methods generally produce a loss of the original ZTC physical properties with increasing amount of oxidation, the electrochemical method shows much better controllability and, unlike chemical treatments, enables the generation of a large number of oxygen groups (O = 11000- 3300 μmol/g), with a higher proportion of active functionalities, while retaining a high surface area (ranging between 1900-3500 m2/g), a high microporosity and an ordered 3-D structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show, through some examples, that chemical activation by alkaline hydroxides permits the preparation of activated carbons with tailored pore volume, pore size distribution, pore structure and surface chemistry, which are useful for their application as electrodes in supercapacitors. Examples are presented discussing the importance of each of these properties on the double layer capacitance, on the kinetics of the electric double-layer charge-discharge process and on the pseudo-capacitative contribution from the surface functional groups or the addition of a conducting polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of treatment of an activated carbon with Sulphur precursors on its textural properties and on the ability of the complex synthesized for mercury removal in aqueous solutions are studied. To this end, a commercial activated carbon has been modified by treatments with aqueous solutions of Na2S and H2SO4 at two temperatures (25 and 140 °C) to introduce sulphur species on its surface. The prepared adsorbents have been characterized by N2 (-196 °C) and CO2 (0 °C) adsorption, thermogravimetric analysis, temperature-programmed decomposition and X-ray photoelectron spectroscopy, and their adsorption capacities to remove Hg(II) ions in aqueous solutions have been determined. It has been shown that the impregnation treatments slightly modified the textural properties of the samples, with a small increase in the textural parameters (BET surface area and mesopore volumes). By contrast, surface oxygen content was increased when impregnation was carried out with Na2S, but it decreased when H2SO4 was used. However, the main effect of the impregnation treatments was the formation of surface sulphur complexes of thiol type, which was only achieved when the impregnation treatments were carried out at low temperature (25 °C). The presence of surface sulphur enhances the adsorption behaviour of these samples in the removal of Hg(II) cations in aqueous solutions at pH 2. In fact, complete Hg(II) removal is only obtained with the sulphur-containing activated carbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show here that a physical activation process that is diffusion-controlled yields an activated carbon whose chemistry – both elemental and functional – varies radially through the particles. For the ∼100 μm particles considered here, diffusion-controlled activation in CO2 at 800 °C saw a halving in the oxygen concentration from the particle periphery to its center. It was also observed that this activation process leads to an increase in keto and quinone groups from the particle periphery towards the center and the inverse for other carbonyls as well as ether and hydroxyl groups, suggesting the two are formed under CO2-poor and -rich environments, respectively. In contrast to these observations, use of physical activation processes where diffusion-control is absent are shown to yield carbons whose chemistry is radially invariant. This suggests that a non-diffusion limited activation processes should be used if the performance of a carbon is dependent on having a specific optimal pore surface chemical composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A commercially available dense carbon monolith (CM) and four carbon monoliths obtained from it have been studied as electrochemical capacitor electrodes in a two-electrode cell. CM has: (i) very high density (1.17 g cm−3), (ii) high electrical conductivity (9.3 S cm−1), (iii) well-compacted and interconnected carbon spheres, (iv) homogeneous microporous structure and (v) apparent BET surface area of 957 m2g−1. It presents interesting electrochemical behaviors (e.g., excellent gravimetric capacitance and outstanding volumetric capacitance). The textural characteristics of CM (porosity and surface chemistry) have been modified by means of different treatments. The electrochemical performances of the starting and treated monoliths have been analyzed as a function of their porous textures and surface chemistry, both on gravimetric and volumetric basis. The monoliths present high specific and volumetric capacitances (292 F g−1 and 342 F cm−3), high energy densities (38 Wh kg−1 and 44 Wh L−1), and high power densities (176 W kg−1 and 183 W L−1). The specific and volumetric capacitances, especially the volumetric capacitance, are the highest ever reported for carbon monoliths. The high values are achieved due to a suitable combination of density, electrical conductivity, porosity and oxygen surface content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close to unity). To see the effect of oxygen surface chemistry, selected samples having similar porosity but different oxygen contents were studied in the low relative pressure range. At low ethanol concentration (225 ppmv) adsorption is favored in oxidized samples, remarking the effect of the oxidizing treatment used (HNO3 is more effective than air) and the type of oxygen functionalities created (carboxyl and anhydride groups are more effective than phenolic, carbonyl and derivatives). To analyze the high relative pressure range, spherical and additional ACs were used. As the relative pressure of ethanol increases, the effect of oxygen-containing surface groups decreases and microporosity becomes the most important variable affecting the adsorption of ethanol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Very different carbon materials have been used as support in the preparation of supported ionic liquid phase samples (SILP). Some of them have been oxidized, either strongly (with ammonium persulfate solution) or weakly (with air at 300 °C, 2 h). The purpose is to establish which properties of the supports (e.g., porosity -volume and type-, surface area, oxygen surface chemistry and morphology) determine the IL adsorption capacity and the stability (immobilization) of the supported IL phase. The ionic liquid used in this work is 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]). For each support, samples with different amounts of ionic liquid have been prepared. The maximum IL that can be loaded depends mainly on the total pore volume of the supports. For comparable pore volumes, the porosity type and the oxygen surface content have no influence on the IL loading. The supported IL fills most of the pores, leaving some blocked porosity. The stability of the supported IL phase (especially important for its subsequent use in catalysis) has been tested in water under general hydrogenation conditions (60 °C and 10 bar H2). In general, leaching is low but it increases with the amount of IL loaded and with the oxidation treatments of the supports.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hierarchical porous carbon materials prepared by the direct carbonization of lignin/zeolite mixtures and the subsequent basic etching of the inorganic template have been electrochemically characterized in acidic media. These lignin-based templated carbons have interesting surface chemistry features, such as a variety of surface oxygen groups and also pyridone and pyridinic groups, which results in a high capacitance enhancement compared to petroleum-pitch-based carbons obtained by the same procedure. Furthermore, they are easily electro-oxidized in a sulfuric acid electrolyte under positive polarization to produce a large amount of surface oxygen groups that boosts the pseudocapacitance. The lignin-based templated carbons showed a specific capacitance as high as 250 F g−1 at 50 mA g−1, with a capacitance retention of 50 % and volumetric capacitance of 75 F cm−3 at current densities higher than 20 A g−1 thanks to their suitable porous texture. These results indicate the potential use of inexpensive biomass byproducts, such as lignin, as carbon precursors in the production of hierarchical carbon materials for electrodes in electrochemical capacitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrophobic Ti-MCM-41 samples prepared by post-synthesis silylation treatment demonstrate to be highly active and selective catalysts in olefins epoxidation by using organic hydroperoxides as oxidizing agents in liquid phase reaction systems. Epoxide yields show important enhancements with increased silylation degrees of the Ti-mesoporous samples. Catalytic studies are combined and correlated with spectroscopic techniques (e.g. XRD, XANES, UV-Visible, 29Si MAS-NMR) and calorimetric measurements to better understand the changes in the surface chemistry of Ti-MCM-41 samples due to the post-synthesis silylation treatment and to ascertain the role of these trimethylsilyl groups incorporated in olefin epoxidation. In such manner, the effect of the organic moieties on solids, and both water and glycol molecules contents on the catalytic activity and selectivity are analyzed in detail. Results show that the hydrophobicity level of the samples is responsible for the decrease in water adsorption and, consequently, the negligible formation of the non-desired glycol during the catalytic process. Thus, catalyst deactivation by glycol poisoning of Ti active sites is greatly diminished, this increasing catalyst stability and leading to practically quantitative production of the corresponding epoxide. The extended use of these hydrophobic Ti-MCM-41 catalysts together with organic hydroperoxides for the highly efficient and selective epoxidation of natural terpenes is also exemplified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.