2 resultados para structural optimization

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biopolymers do not have competitive prices, which has prevented their industrial exploitation on a global scale so far. In this context, Using nanoclays, improvements in certain biopolymer properties, mainly mechanical and thermal, have been achieved. However, research has been much less focused on changing optical properties through the incorporation of nanoclays. At the same time, current research has focused on obtaining nanopigments, by organic dyes adsoptions into different nanoclays in order to achieve sustainable colouring and high performance materials. By combining advances in these lines of research, biodegradable composites with optimal mechanical and optical properties can be obtained. The aim of this work is to find the optimal formulation of naturally sourced nanopigments, incorporate them into a biological origin epoxy resin, and obtain a significant improvement in their mechanical, and optical properties. We combine three structural modifiers in the nanopigment synthesis: surfactant, silane and mordant salt. The latter was selected in order to replicate the mordant textile dyeing with natural dyes. Using a Taguchi’s desing L8, we look for the effect of the presence of the modifiers, the pH acidification, and the interactions effect between the synthesis factors. Three natural dyes were selected: chlorophyll, beta-carotene, and beetroot extract. Furthermore we use two kinds of laminar nanoclays, differentiated by the ion exchange charge: montmorillonite, and hydrotalcite. Then the thermal, mechanical and colorimetric characterization of the bionanocomposite materials was carried out. The optimal conditions to obtain the best bionanocomposite materials are using acid pH, and modifying the nanoclays with mordant and surfactant.