5 resultados para structural equations modelling

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, several explanatory models have been developed which attempt to analyse the predictive worth of various factors in relation to academic achievement, as well as the direct and indirect effects that they produce. The aim of this study was to examine a structural model incorporating various cognitive and motivational variables which influence student achievement in the two basic core skills in the Spanish curriculum: Spanish Language and Mathematics. These variables included differential aptitudes, specific self-concept, goal orientations, effort and learning strategies. The sample comprised 341 Spanish students in their first year of Compulsory Secondary Education. Various tests and questionnaires were used to assess each student, and Structural Equation Modelling (SEM) was employed to study the relationships in the initial model. The proposed model obtained a satisfactory fit for the two subjects studied, and all the relationships hypothesised were significant. The variable with the most explanatory power regarding academic achievement was mathematical and verbal aptitude. Also notable was the direct influence of specific self-concept on achievement, goal-orientation and effort, as was the mediatory effect that effort and learning strategies had between academic goals and final achievement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a result of studies examining factors involved in the learning process, various structural models have been developed to explain the direct and indirect effects that occur between the variables in these models. The objective was to evaluate a structural model of cognitive and motivational variables predicting academic achievement, including general intelligence, academic self-concept, goal orientations, effort and learning strategies. The sample comprised of 341 Spanish students in the first year of compulsory secondary education. Different tests and questionnaires were used to evaluate each variable, and Structural Equation Modelling (SEM) was applied to contrast the relationships of the initial model. The model proposed had a satisfactory fit, and all the hypothesised relationships were significant. General intelligence was the variable most able to explain academic achievement. Also important was the direct influence of academic self-concept on achievement, goal orientations and effort, as well as the mediating ability of effort and learning strategies between academic goals and final achievement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing need within the footwear sector to customise the design of the last from which a specific footwear style is to be produced. This customisation is necessary for user comfort and health reasons, as the user needs to wear a suitable shoe. For this purpose, a relationship must be established between the user foot and the last with which the style will be made; up until now, no model has existed that integrates both elements. On the one hand, traditional customised footwear manufacturing techniques are based on purely artisanal procedures which make the process arduous and complex; on the other hand, geometric models proposed by different authors present the impossibility of implementing them in an industrial environment with limited resources for the acquisition of morphometric and structural data for the foot, apart from the fact that they do not prove to be sufficiently accurate given the non-similarity of the foot and last. In this paper, two interrelated geometric models are defined, the first, a bio-deformable foot model and the second, a deformable last model. The experiments completed show the goodness of the model, with it obtaining satisfactory results in terms of comfort, efficiency and precision, which make it viable for use in the sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.