3 resultados para soil moisture content

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a two-component polarimetric model for soil moisture estimation on vineyards suited for C-band radar data. According to a polarimetric analysis carried out here, this scenario is made up of one dominant direct return from the soil and a multiple scattering component accounting for disturbing and nonmodeled signal fluctuations from soil and short vegetation. We propose a combined X-Bragg/Fresnel approach to characterize the polarized direct response from soil. A validation of this polarimetric model has been performed in terms of its consistency with respect to the available data both from RADARSAT-2 and from indoor measurements. High inversion rates are reported for different phenological stages of vines, and the model gives a consistent interpretation of the data as long as the volume component power remains about or below 50% of the surface contribution power. However, the scarcity of soil moisture measurements in this study prevents the validation of the algorithm in terms of the accuracy of soil moisture retrieval and an extensive campaign is required to fully demonstrate the validity of the model. Different sources of mismatches between the model and the data have been also discussed and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU) PBL. YSU is a first-order scheme that uses non-local eddy diffusivity coefficients to compute turbulent fluxes. It is based on the MRF, and improves it with an explicit treatment of the entrainment. With the aim of evaluating the RAMS results for these PBL parameterizations, a series of numerical simulations have been performed and contrasted with the results obtained using the Mellor and Yamada (MY) scheme, also widely used, and the standard PBL scheme in the RAMS model. The numerical study carried out here is focused on mesoscale circulation events during the summer, as these meteorological situations dominate this season of the year in the Western Mediterranean coast. In addition, the sensitivity of these PBL parameterizations to the initial soil moisture content is also evaluated. The results show a warmer and moister PBL for the YSU scheme compared to both MRF and MY. The model presents as well a tendency to overestimate the observed temperature and to underestimate the observed humidity, considering all PBL schemes and a low initial soil moisture content. In addition, the bias between the model and the observations is significantly reduced moistening the initial soil moisture of the corresponding run. Thus, varying this parameter has a positive effect and improves the simulated results in relation to the observations. However, there is still a significant overestimation of the wind speed over flatter terrain, independently of the PBL scheme and the initial soil moisture used, even though a different degree of accuracy is reproduced by RAMS taking into account the different sensitivity tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The moisture content and its spatial distribution has a great influence on the durability properties of concrete structures. Several non-destructive techniques have been used for the determination of the total water content, but moisture distribution is difficult to determine. In this paper impedance spectroscopy is used to study the water distribution in concrete samples with controlled and homogeneously distributed moisture contents. The technique is suitable for the determination of water distribution inside the sample, using the appropriate equivalent circuits. It is shown that using the selected drying procedures there is no change in the solid phase of the samples, although the technique can only be used for the qualitative study of variations in the solid phase when samples are too thick. The results of this work show that for a wide range of concrete percentages of saturation, from full to 18 % saturation, practically all the pores keep at least a thin layer of electrolyte covering their walls, since the capacitance measurement results are practically independent of the saturation degree.