5 resultados para sodium perborate
em Universidad de Alicante
Resumo:
Active edible films were prepared by adding carvacrol into sodium caseinate (SC) and calcium caseinate (CC) matrices plasticized with two different glycerol concentrations (25 and 35 wt%) prepared by solvent casting. Functional characterisation of these bio-films was carried out by determination of some of their physico-chemical properties, such as colour, transparency, oxygen barrier, wettability, dye permeation properties and antibacterial effectiveness against Gram negative and Gram positive bacteria. All films exhibited good performance in terms of optical properties in the CIELab space showing high transparency. Carvacrol was able to reduce CC oxygen permeability and slightly increased the surface hydrophobicity. Dye diffusion experiments were performed to evaluate permeation properties. The diffusion of dye through films revealed that SC was more permeable than CC. The agar diffusion method was used for the evaluation of the films antimicrobial effectiveness against Escherichia coli and Staphylococcus aureus. Both SC and CC edible films with carvacrol showed inhibitory effects on both bacteria.
Resumo:
Edible active films based on sodium caseinate (SC) and calcium caseinate (CC) plasticized with glycerol (G) at three different concentrations and carvacrol (CRV) as active agent were prepared by solvent casting. Transparent films were obtained and their surfaces were analysed by optical microscopy and scanning electron microscopy (SEM). The influence of the addition of three different plasticizer concentrations was studied by determining tensile properties, while Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to evaluate the structural and thermal behavior of such films. The addition of glycerol resulted in a reduction in the elastic modulus and tensile strength, while some increase in the elongation at break was observed. In general terms, SC films showed flexibility higher than the corresponding CC counterparts. In addition, the presence of carvacrol caused further improvements in ductile properties suggesting the presence of stronger interactions between the protein matrix and glycerol, as it was also observed in thermal degradation studies. FTIR spectra of all films showed the characteristic bands and peaks corresponding to proteins as well as to primary and secondary alcohols. In summary, the best results regarding mechanical and structural properties for caseinates-based films containing carvacrol were found for the formulations with high glycerol concentrations.
Resumo:
Polyaniline/montmorillonite nanocomposites (PANI/M) were obtained by intercalation of aniline monomer into M modified with different cations and subsequent oxidative polymerization of the aniline. The modified-clay was prepared by ion exchange of sodium, copper and iron cations in the clay (Na–M, Cu–M and Fe–M respectively). Infrared spectroscopy confirms the electrostatic interaction between the oxidized PANI and the negatively charged surface of the clay. X-ray diffraction analysis provides structural information of the prepared materials. The nanocomposites were characterized by transmission electron microscopy and their thermal degradation was investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites have higher thermal stability than pure PANI. The electrical conductivity of the nanocomposites increased between 12 and 24 times with respect to the pure M and this increase was dependent on the cation-modification. The electrochemical behavior of the polymers extracted from the nanocomposites was studied by cyclic voltammetry and a good electrochemical response was observed.
Resumo:
A simple method was used to synthesize poly(2-aminophenol), poly(2-aminophenol-co-Aniline) and polyaniline nanocomposites with sodium-montmorillonite (Na-M) using in situ intercalative oxidative polymerization. Morphology and thermal properties of the synthesized nanocomposites were examined by transmission electron microscopy (TEM) and thermogravimetric analysis. The thermal analysis shows an improved thermal stability of the nanocomposites in comparison with the pure poly(2-aminophenol). The intercalation of polymers into the clay layers was confirmed by X-ray diffraction studies, TEM images and FTIR spectroscopy. In addition, the room temperature conductivity values of these nanocomposites varied between 8.21 × 10−5 and 6.76 × 10−4 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites, has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization into Na-M produces electroactive polymers.
Resumo:
The low temperature water–gas shift (WGS) reaction has been studied over Ni–CeO2/Graphene and Ni/Graphene. The catalysts were prepared with 5 wt.% Ni and 20 wt.% CeO2 loadings, by deposition-precipitation employing sodium hydroxide and urea as precipitating agents. The materials were characterized by TEM, powder X-ray diffraction, Raman spectroscopy, H2-temperature-programmed reduction and X-ray photoelectron spectroscopy (XPS). The characterization and the reaction results indicated that the interaction between the active species and the support is higher than with activated carbon, and this hinders the reducibility of ceria and thus the catalytic performance. On the other hand, the presence of residual sodium in samples prepared by precipitation with NaOH facilitated the reduction of ceria. The catalytic activity was highly improved in the presence of sodium, what can be explained on the basis of an associative reaction mechanism which is favored over Ni-O-Na entities.