4 resultados para self-defocusing photorefractive media, unbiased photorefractive media, low divergence interactions

em Universidad de Alicante


Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel magnetic nanoparticle-supported oxime palladacycle catalyst was successfully prepared and characterized. The magnetically recoverable catalyst was evaluated in the room temperature Suzuki–Miyaura cross-coupling reaction of aryl iodides and bromides in aqueous media. The catalyst was shown to be highly active under phosphine-free and low Pd loading (0.3 mol%) conditions. The catalyst could be easily separated from the reaction mixture using an external magnet and reused for six consecutive runs without significant loss of activity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nanostructures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett model, we provide a general analytical expression of the electromagnetic fields that can propagate along the direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of diffraction.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We address in this paper a voltammetric study of the charge transfer processes characteristic of Pt(1 0 0) and vicinal surfaces in alkaline media. The electrochemical behavior of a series of stepped surfaces of the type Pt(S)[n(1 0 0) × (1 1 1)] has been characterized using cyclic voltammetry at different pHs, charge displacement measurements and FTIR experiments for adsorbed CO. The results from these techniques allow assigning the different peaks appearing in the voltammogram to hydrogen and/or OH adsorption on the different sites of these surfaces, namely, terrace and step sites. Additionally, the potential of zero total charge (pztc) of the electrodes was determined. The resulting pztc values shift to more negative values when the step density increases on the surface up to n = 5. FTIR spectroscopy experiments have been used to monitor the adsorption of CO on the different surfaces as well as the consequent CO oxidation, accompanying a positive potential sweep. The oxidation of adsorbed CO on (1 0 0) terraces is catalyzed by the presence of the (1 1 1) steps. The FTIR spectra revealed that CO is mostly bonded in bridge configuration at low potentials interconverting to on-top when the electrode potential is increased.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.