4 resultados para seedling emergence

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrary to the antiferromagnetic and insulating character of bulk NiO, one-dimensional chains of this material can become half metallic due to the lower coordination of their atoms. Here we present ab initio electronic structure and quantum transport calculations of ideal infinitely long NiO chains and of more realistic short ones suspended between Ni electrodes. While infinite chains are insulating, short suspended chains are half-metallic minority-spin conductors that displays very large magnetoresistance and a spin-valve behavior controlled by a single atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Müller cells are the main glial cells in the retina, and are related to plexiform layer activity. Recent studies have demonstrated that Müller cells are involved in the synaptic conservation, plasticity, development and metabolism of glutamate. During turtle retinal development, layers, cells and synapses appear at different times. The aim of this research is to study the emergence of Müller cells during embryonic development and their relationship with the synaptogenesis. The authors used retinas from Trachemys scripta elegans embryos at stages S14, 18, 20, 23, and 26. Some retinas were processed with immunocytochemistry in order to detect the presence of glutamine synthetase in Müller cells, which was used as a marker of these cells. Other retinas from the same stages were processed for ultrastructural studies. Samples were observed in confocal and transmission electron microscopes, respectively. The present results show that glutamine synthetase expression in Müller cells occurs at S18, before the emergence of the retinal layers and the early synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest plantations have been extensively used to combat desertification. In drylands, harsh climate conditions and unfertile soils often preclude seedling establishment. The improvement in seedling quality by manipulating nutrient availability could contribute to increase planting success. However, morpho-functional traits defining optimum seedling quality in drylands, and the fertilization schemes to achieve them, are still under discussion. Several studies suggest that well fertilized seedlings may perform better than nutrient limited seedlings in these environments. However, recent works have shown opposite results. In this review, we discuss the concept of seedling quality in drylands based on an evaluation of the effects of nutrient manipulation on seedling morpho-functional traits and field performance. According to existing data, we hypothesize that nutrient-limited small seedlings may be better adapted to arid environments and unfavorable microsites, where access to water is uncertain and a conservative water use strategy may be advantageous. In contrast, in dry sub-humid areas, areas with deep soils, protected from excess radiation, and areas where irrigation is feasible, well-fertilized big seedlings with high root growth potential may have more chances of success. We discuss this theory in the context of the multiple objectives of dryland restoration and the environmental constrains posed by these areas, and identify knowledge gaps that should be targeted to test our hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide class of nanomagnets shows striking quantum behaviour, known as quantum spin tunnelling (QST): instead of two degenerate ground states with opposite magnetizations, a bonding-antibonding pair forms, resulting in a splitting of the ground-state doublet with wave functions linear combination of two classically opposite magnetic states, leading to the quenching of their magnetic moment. Here we study how QST is destroyed and classical behaviour emerges in the case of magnetic adatoms, where, contrary to larger nanomagnets, the QST splitting is in some instances bigger than temperature and broadening. We analyze two different mechanisms for the renormalization of the QST splitting: Heisenberg exchange between different atoms, and Kondo exchange interaction with the substrate electrons. Sufficiently strong spin-substrate and spin-spin coupling renormalize the QST splitting to zero allowing the environmental decoherence to eliminate superpositions between classical states, leading to the emergence of spontaneous magnetization. Importantly, we extract the strength of the Kondo exchange for various experiments on individual adatoms and construct a phase diagram for the classical to quantum transition.