6 resultados para sedimentary transport model

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A conditioning procedure is proposed allowing to install into the concrete specimens any selected value of water saturation degree with homogeneous moisture distribution. This is achieved within the least time and the minimum alteration of the concrete specimens. The protocol has the following steps: obtaining basic drying data at 50 °C (water absorption capacity and drying curves); unidirectional drying of the specimens at 50 °C until reaching the target saturation degree values; redistribution phase in closed containers at 50 °C (with measurement of the quasi-equilibrium relative humidities); storage into controlled environment chambers until and during mass transport tests, if necessary. A water transport model is used to derive transport parameters of the tested materials from the drying data, i.e., relative permeabilities and apparent water diffusion coefficients. The model also allows calculating moisture profiles during isothermal drying and redistribution phases, thus allowing optimization of the redistribution times for obtaining homogeneous moisture distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water – natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented simulations by ACUAINTRUSION and PHREEQC produced similar results, making predictions consistent with the experimental data. However, the simulated results are not identical to the experimental data; sulphate (total S) is overpredicted by both models, most likely due to such factors as the kinetics of gypsum, the possible variations in the exchange coefficients due to salinity and the neglect of other processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Naproxen-C14H14O3 is a nonsteroidal anti-inflammatory drug which has been found at detectable concentrations in wastewater, surface water, and groundwater. Naproxen is relatively hydrophilic and is in anionic form at pH between 6 and 8. In this study, column experiments were performed using an unconsolidated aquifer material from an area near Barcelona (Spain) to assess transport and reaction mechanisms of Naproxen in the aquifer matrix under different pore water fluxes. Results were evaluated using HYDRUS-1D, which was used to estimate transport parameters. Batch sorption isotherms for Naproxen conformed with the linear model with a sorption coefficient of 0.42 (cm3 g−1), suggesting a low sorption affinity. Naproxen breakthrough curves (BTCs) measured in soil columns under steady-state, saturated water flow conditions displayed similar behavior, with no apparent hysteresis in sorption or dependence of retardation (R, 3.85-4.24) on pore water velocities. Soil sorption did not show any significant decrease for increasing flow rates, as observed from Naproxen recovery in the effluent. Sorption parameters estimated by the model suggest that Naproxen has a low sorption affinity to aquifer matrix. Most sorption of Naproxen occurred on the instantaneous sorption sites, with the kinetic sorption sites representing only about 10 to 40% of total sorption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, absolute water permeability is estimated from capillary imbibition and pore structure for 15 sedimentary rock types. They present a wide range of petrographic characteristics that provide degrees of connectivity, porosities, pore size distributions, water absorption coefficients by capillarity and water permeabilities. A statistical analysis shows strong correlations among the petrophysical parameters of the studied rocks. Several fundamental properties are fitted into different linear and multiple expressions where water permeability is expressed as a generalized function of the properties. Some practical aspects of these correlations are highlighted in order to use capillary imbibition tests to estimate permeability. The permeability–porosity relation is discussed in the context of the influence of pore connectivity and wettability. As a consequence, we propose a generalized model for permeability that includes information about water fluid rate (water absorption coefficient by capillarity), water properties (density and viscosity), wetting (interfacial tension and contact angle) and pore structure (pore radius and porosity). Its application is examined in terms of the type of pores that contribute to water transport and wettability. The results indicate that the threshold pore radius, in which water percolates through rock, achieves the best description of the pore system. The proposed equation is compared against Carman–Kozeny's and Katz–Thompson's equations. The proposed equation achieves very accurate predictions of the water permeability in the range of 0.01 to 1000 mD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effect of a structural nanoconstriction on the coherent transport properties of otherwise ideal zigzag-edged infinitely long graphene ribbons. The electronic structure is calculated with the standard one-orbital tight-binding model and the linear conductance is obtained using the Landauer formula. We find that, since the zero-bias current is carried in the bulk of the ribbon, this is very robust with respect to a variety of constriction geometries and edge defects. In contrast, the curve of zero-bias conductance versus gate voltage departs from the (2n+1)e2∕h staircase of the ideal case as soon as a single atom is removed from the sample. We also find that wedge-shaped constrictions can present nonconducting states fully localized in the constriction close to the Fermi energy. The interest of these localized states in regards to the formation of quantum dots in graphene is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effect of magnetic anisotropy in a single electron transistor with ferromagnetic electrodes and a non-magnetic island. We identify the variation δμ of the chemical potential of the electrodes as a function of the magnetization orientation as a key quantity that permits to tune the electrical properties of the device. Different effects occur depending on the relative size of δμ and the charging energy. We provide preliminary quantitative estimates of δμ using a very simple toy model for the electrodes.