2 resultados para secondary control

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sedimentary record of the Tarcău and Vrancea Nappes, belonging to the flysch accretionary zone of the Eastern Carpathians (Eastern Carpathian Outer Flysch), registered Cretaceous-Miocene events during the evolution of the Moldavidian Basin. Our biostratigraphic data indicate that the deposits studied are younger than previously reported. The comparison of sedimentary record studied with the Late Cretaceous-Early Miocene global eustatic curve indicates that eustatic factor played a secondary role, after the tectonic one. Four main stages of different processes influenced by tectonics are recognized in the sedimentary record: (1) Campanian-Maastrichtian-earliest Paleocene; (2) latest Ypresian-Lutetian; (3) late Chattian-earliest Aquitanian, and (4) late Aquitanian-early Burdigalian. The late Chattian- earliest Aquitanian and late Aquitanian-early Burdigalian records indicate a high tectonic influence. The first event was related to the foredeep stage of the sedimentary domain studied, and the second one to the deformation stage of the same domain. The sedimentary records of tectonic influence recognized during these stages are useful tools for geodynamic reconstructions. The stratigraphic correlation of Tarcău and Vrancea sedimentary records are used

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.