3 resultados para scanning electron microscope.

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new interaction between insects and carnivorous plants is reported from Brazil. Larvae of the predatory flower fly Toxomerus basalis (Diptera: Syrphidae: Syrphinae) have been found scavenging on the sticky leaves of several carnivorous sundew species (Drosera, Droseraceae) in Minas Gerais and São Paulo states, SE Brazil. This syrphid apparently spends its whole larval stage feeding on prey trapped by Drosera leaves. The nature of this plant-animal relationship is discussed, as well as the Drosera species involved, and locations where T. basalis was observed. 180 years after the discovery of this flower fly species, its biology now has been revealed. This is (1) the first record of kleptoparasitism in the Syrphidae, (2) a new larval feeding mode for this family, and (3) the first report of a dipteran that shows a kleptoparasitic relationship with a carnivorous plant with adhesive flypaper traps. The first descriptions of the third instar larva and puparium of T. basalis based on Scanning Electron Microscope analysis are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of single magnetic atoms in a surface via spin-flip assisted tunneling. A particular and intriguing case is the Mn dimer case. We show here that the existing theories for inelastic transport spectroscopy do not explain the observed spin transitions when both atoms are equally coupled to the scanning tunneling microscope tip and the substrate, the most likely experimental situation. The hyperfine coupling to the nuclear spins is shown to lead to a finite excitation amplitude, but the physical mechanism leading to the large inelastic signal observed is still unknown. We discuss some other alternatives that break the symmetry of the system and allow for larger excitation probabilities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spin dynamics of all ferromagnetic materials are governed by two types of collective phenomenon: spin waves and domain walls. The fundamental processes underlying these collective modes, such as exchange interactions and magnetic anisotropy, all originate at the atomic scale. However, conventional probing techniques based on neutron1 and photon scattering2 provide high resolution in reciprocal space, and thereby poor spatial resolution. Here we present direct imaging of standing spin waves in individual chains of ferromagnetically coupled S = 2 Fe atoms, assembled one by one on a Cu2N surface using a scanning tunnelling microscope. We are able to map the spin dynamics of these designer nanomagnets with atomic resolution in two complementary ways. First, atom-to-atom variations of the amplitude of the quantized spin-wave excitations are probed using inelastic electron tunnelling spectroscopy. Second, we observe slow stochastic switching between two opposite magnetization states3, 4, whose rate varies strongly depending on the location of the tip along the chain. Our observations, combined with model calculations, reveal that switches of the chain are initiated by a spin-wave excited state that has its antinodes at the edges of the chain, followed by a domain wall shifting through the chain from one end to the other. This approach opens the way towards atomic-scale imaging of other types of spin excitation, such as spinon pairs and fractional end-states5, 6, in engineered spin chains.