3 resultados para relaxation

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered non-perturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples and we find values in the 1-10 ns range at room temperature. The proposed mechanism dominates the spin relaxation in high mobility graphene samples and should also apply to other planar aromatic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered nonperturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples and we find values in the microsecond range at room temperature. Interestingly, this mechanism is anisotropic on two counts. First, the relaxation rate is different for off-plane and in-plane spin quantization axis. Second, the spin relaxation rate depends on the angle formed by the crystal momentum with the carbon-carbon bond. In addition, the spin lifetime is also valley dependent. The proposed mechanism sets an upper limit for spin lifetimes in graphene and will be relevant when samples of high quality can be fabricated free of extrinsic sources of spin relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aging process involves a decline in immune functioning that renders elderly people more vulnerable to disease. In residential programs for the aged, it is vital to diminish their risk of disease, promote their independence, and augment their psychological well-being and quality of life. Methods: We performed a randomized controlled study, evaluating the ability of a relaxation technique based on Benson’s relaxation response to enhance psychological well-being and modulate the immune parameters of elderly people living in a geriatric residence when compared to a waitlist control group. The study included a 2-week intervention period and a 3-month follow-up period. The main outcome variables were psychological well-being and quality of life, biomedical variables, immune changes from the pre-treatment to post-treatment and follow-up periods. Results: Our findings reveal significant differences between the experimental and control groups in CD19, CD71, CD97, CD134, and CD137 lymphocyte subpopulations at the end of treatment. Furthermore, there was a decrease in negative affect, psychological discomfort, and symptom perception in the treatment group, which increased participants’ quality of life scores at the three-month follow-up. Conclusions: This study represents a first approach to the application of a passive relaxation technique in residential programs for the elderly. The method appears to be effective in enhancing psychological well-being and modulating immune activity in a group of elderly people. This relaxation technique could be considered an option for achieving health benefits with a low cost for residential programs, but further studies using this technique in larger samples of older people are needed to confirm the trends observed in the present study. Trial registration: International Standard Randomised Controlled Trial Number Register ISRCTN85410212.