17 resultados para reaction-controlled phase-transfer catalyst

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimeric anthracenyldimethyl-derived Cinchona ammonium salts are used as chiral organocatalysts in 5 mol% for the phase-transfer enantioselective alkylation reaction of 2-alkoxycarbonyl-1-indanones with activated bromides. The corresponding adducts bearing a new all-carbon quaternary center are obtained usually in high yield and with moderate and opposite enantioselectivity (up to 55%) when using ammonium salts derived from quinidine and its pseudoenantiomer quinine as organocatalysts. These catalysts can be almost quantitatively recovered by precipitation in ether and reused.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a comparative study between the catalytic performance of the 2% CuO/ceria-zirconia powder catalyst and the same catalyst supported on silicon carbide DPF (Diesel Particulate Filter) towards NO oxidation reaction and soot combustion reaction. The ceria-zirconia catalyst was prepared by the co-precipitation method and 2 wt% copper was incorporated by the incipient wetness impregnation method. The catalyst was incorporated onto the ceramic support using a simple and organic solvent-free procedure by a simply dipping the DPF into an aqueous solution of the catalyst. The powder catalyst has been characterized using N2 adsorption at −196 °C, XRD and Raman Spectroscopy; whereas the catalytic coating morphology has been evaluated by SEM and the mechanical stability by an adherence test. Both catalyst configurations were tested for NO oxidation to NO2 and for soot combustion under NOx/O2. The results revealed that incorporation of the very active copper/ceria-zirconia catalyst onto SiC-DPF has been successfully achieved by a simple coating procedure. Furthermore, the catalytic coating has shown suitable mechanical, chemical and thermal stability. A satisfactory catalytic performance of the catalytic-coated filter was reached towards the NO oxidation reaction. Moreover, it was proved that the catalytic coating is stable and the corresponding coated DPF can be reused for several cycles of NO oxidation without a significant decrease in its activity. Finally, it was verified that the loose-contact mode is a good choice to simulate the catalytic performance of this active phase in a real diesel particulate filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ce0.5Pr0.5O2 mixed oxide has been prepared with the highest surface area and smallest particle size ever reported (125 m2/g and 7 nm, respectively), also being the most active diesel soot combustion catalyst ever tested under realistic conditions if catalysts forming highly volatile species are ruled out. This Ce–Pr mixed oxide is even more active than a reference platinum-based commercial catalyst. This study provides an example of the efficient participation of oxygen species released by a ceria catalyst in a heterogeneous catalysis reaction where both the catalyst and one of the reactants (soot) are solids. It has been concluded that both the ceria-based catalyst composition (nature and amount of dopant) and the particle size play key roles in the combustion of soot through the active oxygen-based mechanism. The composition determines the production of active oxygen and the particle size the transfer of such active oxygen species from catalyst to soot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The catalytic activity and durability of 2 wt.% Pd/Al2O3 in powder and washcoated on cordierite monoliths were examined for the liquid phase hydrodechlorination (LPHDC) of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs), also known as dioxins. NaOH was employed as a neutralizing agent, and 2-propanol was used as a hydrogen donor and a solvent. Fresh and spent powder and monolith samples were characterized by elemental analysis, surface area, hydrogen chemisorption, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and transmission electron microscopy/energy dispersive X-ray spectroscopy (TEM/EDX). Three reactor configurations were compared including the slurry and monolith batch reactors as well as the bubble loop column resulting in 100, 70, and 72% sample toxicity reduction, respectively, after 5 h of reaction. However, the slurry and monolith batch reactors lead to catalyst sample loss via a filtration process (slurry) and washcoat erosion (monolith batch), as well as rapid deactivation of the powder catalyst samples. The monolith employed in the bubble loop column remained stable and active after four reaction runs. Three preemptive regeneration methods were evaluated on spent monolith catalyst including 2-propanol washing, oxidation/reduction, and reduction. All three procedures reactivated the spent catalyst samples, but the combustion methods proved to be more efficient at eliminating the more stable poisons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ceria-catalyzed soot oxidation mechanism has been studied by a pulse technique with labeled O2 in the absence and presence of NO, using ceria–soot mixtures prepared in the loose contact mode. In the absence of soot, the ceria-catalyzed oxidation of NO to NO2 takes place with ceria oxygen and not with gas-phase O2. However, the oxygen exchange process between gas-phase O2 and ceria oxygen (to yield back O2, but with oxygen atoms coming from ceria) prevailed with regard to the ceria-catalyzed oxidation of NO to NO2. Gas-phase O2 did not react directly with soot when pulsed to a soot–ceria loose contact mixture. Instead, ceria oxygen is transferred to soot (this step does not require gas-phase molecular oxygen to be present), and gas-phase O2 fills up the vacancies created on the oxide in a further step. The transfer of oxygen between ceria and soot occurred directly in the absence of NO. However, in the presence of NO, NO2 is expected to be additionally generated by ceria oxygen oxidation, which also reacts with soot. The main reaction products of the ceria-catalyzed soot oxidation reaction with NO/O2 were CO2 and NO. Additionally, evidence of the reduction of NOx to N2 was found.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, the steam reforming of biofuels has been presented as a potential hydrogen source for fuel cells. Because this scenario represents an interesting opportunity for Colombia (South America), which produces large amounts of bioethanol, the steam reforming of ethanol was studied over a bimetallic RhPt/La2O3 catalyst under bulk mass transfer conditions. The effect of temperature and the initial concentrations of ethanol and water were evaluated at space velocities above 55,000 h−1 to determine the conditions that maximize the H2/CO ratio and reduce CH4 production while maintaining 100% conversion of ethanol. These requirements were accomplished when 21 mol% H2O and 3 mol% C2H5OH (steam/ethanol molar ratio = 7) were reacted at 600 °C. The catalyst stability was assessed under these reaction conditions during 120 h on stream, obtaining ethanol conversions above 99% during the entire test. The effect of both H2 and air flows as catalyst regeneration treatments were evaluated after 44 and 67 h on stream, respectively. The results showed that H2 treatment accelerated catalyst deactivation, and air regeneration increased both the catalyst stability and the H2 selectivity while decreasing CH4 generation. Fresh and spent catalyst samples were characterized by TEM/EDX, XPS, TPR, and TGA. Although the Rh and Pt in the fresh catalyst were completely reduced, the spent samples showed a partial oxidation of Rh and small amounts of carbonaceous residue. A possible Rh–Pt–Rh2O3 structure was proposed as the active site on the catalyst, which was regenerated by air treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Palladium nanoparticles supported on graphene platelets have been efficiently used as catalyst in the Suzuki–Miyaura coupling between aryl bromides and potassium aryltrifluoroborates using 0.1 mol% of Pd and potassium carbonate as base in MeOH/H2O as solvent at 80 °C. The reaction can be performed using conventional and microwave heating showing the catalyst high reusability, particularly with microwaves, where lower aggregation of Pd nanoparticles has been observed. A dissolution/re-deposition catalytic mechanism is proposed, based on the fact that palladium leaching to the solution is detected under microwave irradiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Catalysts consisting of cobalt and nickel impregnated on magnetite have been prepared, characterized and used for the hydroacylation reaction of different azodicarboxylate compounds with aldehydes, using nearly stoichiometric amounts of both reagents in only 3 h. Furthermore, this reaction has been conducted with the smallest amount of catalyst. The cobalt catalyst is stable enough to be removed by magnetic decantation and recycled ten-fold without any detrimental effect on the results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microwave irradiation has considerably enhanced the efficiency of the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)imines in isopropyl alcohol catalyzed by a ruthenium complex bearing the achiral ligand 2-amino-2-methylpropan-1-ol. In addition to shortening reaction times for the transfer hydrogenation processes to only 30 min, the amounts of ruthenium catalyst and isopropyl alcohol can be considerably reduced in comparison with our previous procedure assisted by conventional heating, which diminishes the environmental impact of this new protocol. This methodology can be applied to aromatic, heteroaromatic and aliphatic N-(tert-butylsulfinyl)ketimines, leading, after desulfinylation, to the expected primary amines in excellent yields and with enantiomeric excesses of up to 96 %.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel magnetic nanoparticle-supported oxime palladacycle catalyst was successfully prepared and characterized. The magnetically recoverable catalyst was evaluated in the room temperature Suzuki–Miyaura cross-coupling reaction of aryl iodides and bromides in aqueous media. The catalyst was shown to be highly active under phosphine-free and low Pd loading (0.3 mol%) conditions. The catalyst could be easily separated from the reaction mixture using an external magnet and reused for six consecutive runs without significant loss of activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The low temperature water–gas shift (WGS) reaction has been studied over Ni–CeO2/Graphene and Ni/Graphene. The catalysts were prepared with 5 wt.% Ni and 20 wt.% CeO2 loadings, by deposition-precipitation employing sodium hydroxide and urea as precipitating agents. The materials were characterized by TEM, powder X-ray diffraction, Raman spectroscopy, H2-temperature-programmed reduction and X-ray photoelectron spectroscopy (XPS). The characterization and the reaction results indicated that the interaction between the active species and the support is higher than with activated carbon, and this hinders the reducibility of ceria and thus the catalytic performance. On the other hand, the presence of residual sodium in samples prepared by precipitation with NaOH facilitated the reduction of ceria. The catalytic activity was highly improved in the presence of sodium, what can be explained on the basis of an associative reaction mechanism which is favored over Ni-O-Na entities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel silica supported gold and copper ferrite nanoparticles (NPs) have been synthesized, characterized and used as a separable dual catalyst in Sonogashira type reaction. These Au.CuFe2O4@Silica NPs show a high efficiency as catalyst in the alkynylation not only of aryl iodides but also aryl bromides. By using only 0.5 mol% loading and t-BuOK as base in N,N-dimethylacetamide as solvent, aryl iodides react at 115 ºC in 1 d, whereas for aryl bromides the cross-coupling takes place at 130 ºC in 2 d. The catalyst can be successfully recycled using an external magnet for four consecutive runs.