2 resultados para range of motion
em Universidad de Alicante
Resumo:
The purpose of this study was to examine the differences in knee extensor maximal and endurance strength in elderly. Sixteen healthy elderly served as subjects, eight of them trained , age 61.0±8.9 yrs; height, 170.6±6.8 cm; weight, 71.8±11.7 kg [mean ± standard deviation] and eight untrained 61.4±8.1 yrs, height 174.6±7.4 cm; weight 83.9 ±14.2 kg. Maximal strength in single leg extension exercise was measured unilaterally with the dominant leg until the subjects reached their 1 Repetition Maximum (RM) covering the full Range of Motion (ROM). Muscular endurance was obtained with a load of 75% of 1-RM for 3 consecutive sets, with 2 min rest periods till failure. Load at 1 RM was lower in absolute terms in untrained, but not significant, while the relative 1-RM test was significantly lower in untrained subjects (0.20 vs. 0.25 kg load/kg body weight) (p<0.05). The number of repetitions and amount of weight lifted performed of all 3 sets was higher in trained subjects, but not significant. In the trained group both repetitions and the load managed in the third set was significant lower compared with the first two sets. The result that maximal force output is more affected compared to muscular endurance in these subjects might be due to the habitual use of quadriceps femoris muscles during activity of daily living in both trained and untrained elderly.
Resumo:
Gasoline coming from refinery fluid catalytic cracking (FCC) unit is a major contributor to the total commercial grade gasoline pool. The contents of the FCC gasoline are primarily paraffins, naphthenes, olefins, aromatics, and undesirables such as sulfur and sulfur containing compounds in low quantities. The proportions of these components in the FCC gasoline invariable determine its quality as well as the performance of the associated downstream units. The increasing demand for cleaner and lighter fuels significantly influences the need not only for novel processing technologies but also for alternative refinery and petrochemical feedstocks. Current and future clean gasoline requirements include increased isoparaffins contents, reduced olefin contents, reduced aromatics, reduced benzene, and reduced sulfur contents. The present study is aimed at investigating the effect of processing an unconventional refinery feedstock, composed of blend of vacuum gas oil (VGO) and low density polyethylene (LDPE) on FCC full range gasoline yields and compositional spectrum including its paraffins, isoparaffins, olefins, napthenes, and aromatics contents distribution within a range of operating variables of temperature (500–700 °C) and catalyst-feed oil ratio (CFR 5–10) using spent equilibrium FCC Y-zeolite based catalyst in a FCC pilot plant operated at the University of Alicante’s Research Institute of Chemical Process Engineering (RICPE). The coprocessing of the oil-polymer blend led to the production of gasoline with very similar yields and compositions as those obtained from the base oil, albeit, in some cases, the contribution of the feed polymer content as well as the processing variables on the gasoline compositional spectrum were appreciated. Carbon content analysis showed a higher fraction of the C9–C12 compounds at all catalyst rates employed and for both feedstocks. The gasoline’s paraffinicity, olefinicity, and degrees of branching of the paraffins and olefins were also affected in various degrees by the scale of operating severity. In the majority of the cases, the gasoline aromatics tended toward the decrease as the reactor temperature was increased. While the paraffins and iso-paraffins gasoline contents were relatively stable at around 5 % wt, the olefin contents on the other hand generally increased with increase in the FCC reactor temperature.