2 resultados para random oracle model

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many destination marketing organizations in the United States and elsewhere are facing budget retrenchment for tourism marketing, especially for advertising. This study evaluates a three-stage model using Random Coefficient Logit (RCL) approach which controls for correlations between different non-independent alternatives and considers heterogeneity within individual’s responses to advertising. The results of this study indicate that the proposed RCL model results in a significantly better fit as compared to traditional logit models, and indicates that tourism advertising significantly influences tourist decisions with several variables (age, income, distance and Internet access) moderating these decisions differently depending on decision stage and product type. These findings suggest that this approach provides a better foundation for assessing, and in turn, designing more effective advertising campaigns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.