3 resultados para protein glutamine gamma glutamyltransferase 2

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GlnK proteins belong to the PII superfamily of signal transduction proteins and are involved in the regulation of nitrogen metabolism. These proteins are normally encoded in an operon together with the structural gene for the ammonium transporter AmtB. Haloferax mediterranei possesses two genes encoding for GlnK, specifically, glnK1 and glnK2. The present study marks the first investigation of PII proteins in haloarchaea, and provides evidence for the direct interaction between glutamine synthetase and both GlnK1 and GlnK2. Complex formation between glutamine synthetase and the two GlnK proteins is demonstrated with pure recombinant protein samples using in vitro activity assays, gel filtration chromatography and western blotting. This proteinprotein interaction increases glutamine synthetase activity in the presence of 2-oxoglutarate. Separate experiments that were carried out with GlnK1 and GlnK2 produced equivalent results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To obtain insights into archaeal nitrogen signaling and haloadaptation of the nitrogen/carbon/energy-signaling protein PII, we determined crystal structures of recombinantly produced GlnK2 from the extreme halophilic archaeon Haloferax mediterranei, complexed with AMP or with the PII effectors ADP or ATP, at respective resolutions of 1.49 Å, 1.45 Å, and 2.60 Å. A unique trait of these structures was a three-tongued crown protruding from the trimer body convex side, formed by an 11-residue, N-terminal, highly acidic extension that is absent from structurally studied PII proteins. This extension substantially contributed to the very low pI value, which is a haloadaptive trait of H. mediterranei GlnK2, and participated in hexamer-forming contacts in one crystal. Similar acidic N-extensions are shown here to be common among PII proteins from halophilic organisms. Additional haloadaptive traits prominently represented in H. mediterranei GlnK2 are a very high ratio of small residues to large hydrophobic aliphatic residues, and the highest ratio of polar to nonpolar exposed surface for any structurally characterized PII protein. The presence of a dense hydration layer in the region between the three T-loops might also be a haloadaptation. Other unique findings revealed by the GlnK2 structure that might have functional relevance are: the adoption by its T-loop of a three-turn α-helical conformation, perhaps related to the ability of GlnK2 to directly interact with glutamine synthetase; and the firm binding of AMP, confirmed by biochemical binding studies with ATP, ADP, and AMP, raising the possibility that AMP could be an important PII effector, at least in archaea.