6 resultados para predictors of return to work
em Universidad de Alicante
Resumo:
This paper presents a new approach to the delineation of local labor markets based on evolutionary computation. The aim of the exercise is the division of a given territory into functional regions based on travel-to-work flows. Such regions are defined so that a high degree of inter-regional separation and of intra-regional integration in both cases in terms of commuting flows is guaranteed. Additional requirements include the absence of overlap between delineated regions and the exhaustive coverage of the whole territory. The procedure is based on the maximization of a fitness function that measures aggregate intra-region interaction under constraints of inter-region separation and minimum size. In the experimentation stage, two variations of the fitness function are used, and the process is also applied as a final stage for the optimization of the results from one of the most successful existing methods, which are used by the British authorities for the delineation of travel-to-work areas (TTWAs). The empirical exercise is conducted using real data for a sufficiently large territory that is considered to be representative given the density and variety of travel-to-work patterns that it embraces. The paper includes the quantitative comparison with alternative traditional methods, the assessment of the performance of the set of operators which has been specifically designed to handle the regionalization problem and the evaluation of the convergence process. The robustness of the solutions, something crucial in a research and policy-making context, is also discussed in the paper.
Resumo:
Objectives: To assess changes in mental health in a sample of migrant workers after the eruption of the economic crisis in Spain. Methods: 318 migrant workers were interviewed. Mental health, sociodemographic, and economic crisis related variables were obtained through face-to-face (2008) and phone (2011) interviews. Prevalence of poor mental health (PMH) was compared (2011–2008) and multivariate logistic regression models were fitted. Results: Change in prevalence of PMH was higher in men (aOR 4.63; 95 % CI 2.11–10.16). Subgroups of men showing the largest detrimental mental health effects were: unemployed, with low salaries (≤1,200 euros) and those reporting family burden. An increase of PMH was found in women, without significant associations. Conclusions: Mental health of migrant workers in Spain has worsened during the economic crisis.
Resumo:
Background: Gender inequalities in the exposure to work-related psychosocial hazards are well established. However, little is known about how welfare state regimes influence these inequalities. Objectives: To examine the relationship between welfare state regimes and gender inequalities in the exposure to work-related psychosocial hazards in Europe, considering occupational social class. Methods: We used a sample of 27, 465 workers from 28 European countries. Dependent variables were high strain, iso-strain, and effort-reward imbalance, and the independent was gender. We calculated the prevalence and prevalence ratio separately for each welfare state regime and occupational social class, using multivariate logistic regression models. Results: More female than male managers/professionals were exposed to: high strain, iso-strain, and effort–reward imbalance in Scandinavian [adjusted prevalence ratio (aPR) = 2·26; 95% confidence interval (95% CI): 1·87–2·75; 2·12: 1·72–2·61; 1·41: 1·15–1·74; respectively] and Continental regimes (1·43: 1·23–1·54; 1·51: 1·23–1·84; 1·40: 1·17–1·67); and to high strain and iso-strain in Anglo-Saxon (1·92: 1·40–2·63; 1·85: 1·30–2·64; respectively), Southern (1·43: 1·14–1·79; 1·60: 1·18–2·18), and Eastern regimes (1·56: 1·35–1·81; 1·53: 1·28–1·83). Conclusion: Gender inequalities in the exposure to work-related psychosocial hazards were not lower in those welfare state regimes with higher levels of universal social protection policies.
Resumo:
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts. To reach this goal, the researcher may utilize different tools. For example, amination of the enzyme surface produces an alteration of the isoelectric point of the protein along with its chemical reactivity (primary amino groups are the most widely used to obtain the reaction of the enzyme with surfaces, chemical modifiers, etc.) and even its “in vivo” behavior. This review will show some examples of chemical (mainly modifying the carboxylic groups using the carbodiimide route), physical (using polycationic polymers like polyethyleneimine) and genetic amination of the enzyme surface. Special emphasis will be put on cases where the amination is performed to improve subsequent protein modifications. Thus, amination has been used to increase the intensity of the enzyme/support multipoint covalent attachment, to improve the interaction with cation exchanger supports or polymers, or to promote the formation of crosslinkings (both intra-molecular and in the production of crosslinked enzyme aggregates). In other cases, amination has been used to directly modulate the enzyme properties (both in immobilized or free form). Amination of the enzyme surface may also pursue other goals not related to biocatalysis. For example, it has been used to improve the raising of antibodies against different compounds (both increasing the number of haptamers per enzyme and the immunogenicity of the composite) or the ability to penetrate cell membranes. Thus, amination may be a very powerful tool to improve the use of enzymes and proteins in many different areas and a great expansion of its usage may be expected in the near future.
Resumo:
This paper introduces a new optimization model for the simultaneous synthesis of heat and work exchange networks. The work integration is performed in the work exchange network (WEN), while the heat integration is carried out in the heat exchanger network (HEN). In the WEN synthesis, streams at high-pressure (HP) and low-pressure (LP) are subjected to pressure manipulation stages, via turbines and compressors running on common shafts and stand-alone equipment. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as helper motors and generators to respond to any shortage and/or excess of energy, respectively, in the SSTC axes. The heat integration of the streams occurs in the HEN between each WEN stage. Thus, as the inlet and outlet streams temperatures in the HEN are dependent of the WEN design, they must be considered as optimization variables. The proposed multi-stage superstructure is formulated in mixed-integer nonlinear programming (MINLP), in order to minimize the total annualized cost composed by capital and operational expenses. A case study is conducted to verify the accuracy of the proposed approach. The results indicate that the heat integration between the WEN stages is essential to enhance the work integration, and to reduce the total cost of process due the need of a smaller amount of hot and cold utilities.
Resumo:
The development of electrochemical processes for the conversion of CO2 into value-added products allows innovative carbon capture & utilization (CCU) instead of carbon capture & storage (CCS). In addition, coupling this conversion with renewable energy sources would make it possible to chemically store electricity from these intermittent renewable sources. The electroreduction of CO2 to formate in aqueous solution has been performed using Sn particles deposited over a carbon support. The effect of the particle size and Sn metal loading has been evaluated using cyclic voltammetry and chronoamperometry. The selected electrode has been tested on an experimental filter-press type cell system for continuous and single pass CO2 electroreduction to obtain formate as main product at ambient pressure and temperature. Experimental results show that using electrodes with 0.75 mg Sn cm−2, 150 nm Sn particles, and working at a current density of 90 mA cm−2, it is possible to achieve rates of formate production over 3.2 mmol m−2 s−1 and faradaic efficiencies around 70% for 90 min of continuous operation. These experimental conditions allow formate concentrations of about 1.5 g L−1 to be obtained on a continuous mode and with a single pass of catholyte through the cell.