6 resultados para potential-pH diagrams
em Universidad de Alicante
Resumo:
The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.
Resumo:
The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.
Resumo:
Dung roller beetles of the genus Canthon (Coleoptera: Scarabaeinae) emit an odorous secretion from a pair of pygidial glands. To investigate the chemical composition of these secretions, we used stir bar sorptive extraction (SBSE), coupled with gas chromatography–mass spectrometry (GC–MS) for analysis of extracts of pygidial gland secretions secreted by the dung roller beetles Canthon femoralis femoralis and Canthon cyanellus cyanellus. Chemical analyses of volatiles collected from pygidial gland secretions comprise a great diversity of the functional groups. Chemical profile comparisons showed high intra- and interspecific variability. The pygidial gland secretion of Canthon f. femoralis was dominated by sesquiterpene hydrocarbons, whereas the profile of Canthon c. cyanellus was dominated by carboxylic acids. The different pygidial secretions have a high diversity of chemical compounds suggesting a multifunctional nature involving some key functions in the biology. We discuss the biological potential of these compounds found in the pygidial glands of each species with respect to their ecological and behavioral relevance.
Resumo:
The determination of the potentials of zero total and free charge, pztc and pzfc respectively, were made in a wide pH range by using the CO displacement method and the same calculation assumptions used previously for Pt(1 1 1) electrodes in contact with non-specifically adsorbing anions. Calculation of the pzfc involves, in occasions, long extrapolations that lead us to the introduction of the concept of potential of zero extrapolated charge (pzec). It was observed that the pztc changes with pH but the pzec is independent of this parameter. It was observed that the pztc > pzec at pH > 3.4 but the opposite is true for pH > 3.4. At the latter pH both pzec and pztc coincide. This defines two different pH regions and means that adsorbed hydrogen has to be corrected in the “acidic” solutions at the pztc while adsorbed OH is the species to be corrected in the “alkaline” range. The comparison of the overall picture suggests that neutral conditions at the interface are attained at significantly acidic solutions than those at the bulk.
Resumo:
Local changes of the interfacial pH can significantly affect the rate and mechanism during the course of an electrodic reaction. For instance, different pH values will have a significant effect on the equilibrium properties of both solution and surface species, altering the reactions kinetics. Ethanol oxidation at platinum electrodes in alkaline media involves the fast consumption of OH− species that will change the local pH at the electrode surface, decreasing the reaction rate. In this study, the local pH change during ethanol oxidation in alkaline media is accomplished by using rotating ring-disc electrode (RRDE) experiments. The current at the ring when polarized at the onset of hydrogen evolution serves as a measure of the local pH in the vicinity of the electrode. The results show that the current at the ring at 0.1 V (vs. RHE) becomes more negative during ethanol oxidation, owing to a change in the equilibrium potential of the hydrogen evolution reaction caused by a change in the local pH.
Resumo:
H– and Na–saponite supports have been prepared by several synthesis approaches. 5% Cu/saponite catalysts have been prepared and tested for soot combustion in a NOx + O2 + N2 gas flow and with soot and catalyst mixed in loose contact mode. XRD, FT-IR, N2 adsorption and TEM characterization results revealed that the use of either surfactant or microwaves during the synthesis led to delamination of the saponite support, yielding high surface area and small crystallite size materials. The degree of delamination affected further copper oxide dispersion and soot combustion capacity of the Cu/saponite catalysts. All Cu/saponite catalysts were active for soot combustion, and the NO2-assisted mechanism seemed to prevail. The best activity was achieved with copper oxide supported on a Na–saponite prepared at pH 13 and with surfactant. This best activity was attributed to the efficient copper oxide dispersion on the high surface area delaminated saponite (603 m2 g−1) and to the presence of Na. Copper oxide reduction in H2-TPR experiments occurred at lower temperature for the Na-containing catalysts than for the H-containing counterparts, and all Cu/Na–saponite catalysts were more active for soot combustion than the corresponding Cu/H–saponite catalysts.