2 resultados para polygonal
em Universidad de Alicante
Resumo:
In this paper we present a study of the computational cost of the GNG3D algorithm for mesh optimization. This algorithm has been implemented taking as a basis a new method which is based on neural networks and consists on two differentiated phases: an optimization phase and a reconstruction phase. The optimization phase is developed applying an optimization algorithm based on the Growing Neural Gas model, which constitutes an unsupervised incremental clustering algorithm. The primary goal of this phase is to obtain a simplified set of vertices representing the best approximation of the original 3D object. In the reconstruction phase we use the information provided by the optimization algorithm to reconstruct the faces thus obtaining the optimized mesh. The computational cost of both phases is calculated, showing some examples.
Resumo:
Array measurements have become a valuable tool for site response characterization in a non-invasive way. The array design, i.e. size, geometry and number of stations, has a great influence in the quality of the obtained results. From the previous parameters, the number of available stations uses to be the main limitation for the field experiments, because of the economical and logistical constraints that it involves. Sometimes, from the initially planned array layout, carefully designed before the fieldwork campaign, one or more stations do not work properly, modifying the prearranged geometry. Whereas other times, there is not possible to set up the desired array layout, because of the lack of stations. Therefore, for a planned array layout, the number of operative stations and their arrangement in the array become a crucial point in the acquisition stage and subsequently in the dispersion curve estimation. In this paper we carry out an experimental work to analyze which is the minimum number of stations that would provide reliable dispersion curves for three prearranged array configurations (triangular, circular with central station and polygonal geometries). For the optimization study, we analyze together the theoretical array responses and the experimental dispersion curves obtained through the f-k method. In the case of the f-k method, we compare the dispersion curves obtained for the original or prearranged arrays with the ones obtained for the modified arrays, i.e. the dispersion curves obtained when a certain number of stations n is removed, each time, from the original layout of X geophones. The comparison is evaluated by means of a misfit function, which helps us to determine how constrained are the studied geometries by stations removing and which station or combination of stations affect more to the array capability when they are not available. All this information might be crucial to improve future array designs, determining when it is possible to optimize the number of arranged stations without losing the reliability of the obtained results.